1,166 research outputs found

    A Practical Approach to Protect IoT Devices against Attacks and Compile Security Incident Datasets

    Get PDF
    open access articleThe Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems, ovens, blinds, etc.) using computers and mobile devices. This idea fascinated people and originated a boom of IoT devices together with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing functionalities but neglected some critical issues pertaining to device security. This oversight gave rise to the current situation where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices have been produced and deployed. This article presents our novel research protecting IOT devices using Berkeley Packet Filters (BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions that can be executed by GNU/Linux systems with a low impact on network packet throughput

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Community Self Help

    Get PDF
    This paper advocates controlling crime through a greater emphasis on precautions taken not by individuals, but by communities. The dominant battles in the literature today posit two central competing models of crime control. In one, the standard policing model, the government is responsible for the variety of acts that are necessary to deter and prosecute criminal acts. In the other, private self-help, public law enforcement is largely supplanted by providing incentives to individuals to self-protect against crime. There are any number of nuances and complications in each of these competing stories, but the literature buys into this binary matrix

    A Study on Techniques/Algorithms used for Detection and Prevention of Security Attacks in Cognitive Radio Networks

    Get PDF
    In this paper a detailed survey is carried out on the taxonomy of Security Issues, Advances on Security Threats and Countermeasures ,A Cross-Layer Attack, Security Status and Challenges for Cognitive Radio Networks, also a detailed survey on several Algorithms/Techniques used to detect and prevent SSDF(Spectrum Sensing Data Falsification) attack a type of DOS (Denial of Service) attack and several other  Network layer attacks in Cognitive Radio Network or Cognitive Radio Wireless Sensor Node Networks(WSNN’s) to analyze the advantages and disadvantages of those existing algorithms/techniques

    CHID : conditional hybrid intrusion detection system for reducing false positives and resource consumption on malicous datasets

    Get PDF
    Inspecting packets to detect intrusions faces challenges when coping with a high volume of network traffic. Packet-based detection processes every payload on the wire, which degrades the performance of network intrusion detection system (NIDS). This issue requires an introduction of a flow-based NIDS that reduces the amount of data to be processed by examining aggregated information of related packets. However, flow-based detection still suffers from the generation of the false positive alerts due to incomplete data input. This study proposed a Conditional Hybrid Intrusion Detection (CHID) by combining the flow-based with packet-based detection. In addition, it is also aimed to improve the resource consumption of the packet-based detection approach. CHID applied attribute wrapper features evaluation algorithms that marked malicious flows for further analysis by the packet-based detection. Input Framework approach was employed for triggering packet flows between the packetbased and flow-based detections. A controlled testbed experiment was conducted to evaluate the performance of detection mechanism’s CHID using datasets obtained from on different traffic rates. The result of the evaluation showed that CHID gains a significant performance improvement in terms of resource consumption and packet drop rate, compared to the default packet-based detection implementation. At a 200 Mbps, CHID in IRC-bot scenario, can reduce 50.6% of memory usage and decreases 18.1% of the CPU utilization without packets drop. CHID approach can mitigate the false positive rate of flow-based detection and reduce the resource consumption of packet-based detection while preserving detection accuracy. CHID approach can be considered as generic system to be applied for monitoring of intrusion detection systems

    Studying a Virtual Testbed for Unverified Data

    Get PDF
    It is difficult to fully know the effects a piece of software will have on your computer, particularly when the software is distributed by an unknown source. The research in this paper focuses on malware detection, virtualization, and sandbox/honeypot techniques with the goal of improving the security of installing useful, but unverifiable, software. With a combination of these techniques, it should be possible to install software in an environment where it cannot harm a machine, but can be tested to determine its safety. Testing for malware, performance, network connectivity, memory usage, and interoperability can be accomplished without allowing the program to access the base operating system of a machine. After the full effects of the software are understood and it is determined to be safe, it could then be run from, and given access to, the base operating system. This thesis investigates the feasibility of creating a system to verify the security of unknown software while ensuring it will have no negative impact on the host machine

    Security Engineering of Patient-Centered Health Care Information Systems in Peer-to-Peer Environments: Systematic Review

    Get PDF
    Background: Patient-centered health care information systems (PHSs) enable patients to take control and become knowledgeable about their own health, preferably in a secure environment. Current and emerging PHSs use either a centralized database, peer-to-peer (P2P) technology, or distributed ledger technology for PHS deployment. The evolving COVID-19 decentralized Bluetooth-based tracing systems are examples of disease-centric P2P PHSs. Although using P2P technology for the provision of PHSs can be flexible, scalable, resilient to a single point of failure, and inexpensive for patients, the use of health information on P2P networks poses major security issues as users must manage information security largely by themselves. Objective: This study aims to identify the inherent security issues for PHS deployment in P2P networks and how they can be overcome. In addition, this study reviews different P2P architectures and proposes a suitable architecture for P2P PHS deployment. Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Thematic analysis was used for data analysis. We searched the following databases: IEEE Digital Library, PubMed, Science Direct, ACM Digital Library, Scopus, and Semantic Scholar. The search was conducted on articles published between 2008 and 2020. The Common Vulnerability Scoring System was used as a guide for rating security issues. Results: Our findings are consolidated into 8 key security issues associated with PHS implementation and deployment on P2P networks and 7 factors promoting them. Moreover, we propose a suitable architecture for P2P PHSs and guidelines for the provision of PHSs while maintaining information security. Conclusions: Despite the clear advantages of P2P PHSs, the absence of centralized controls and inconsistent views of the network on some P2P systems have profound adverse impacts in terms of security. The security issues identified in this study need to be addressed to increase patients\u27 intention to use PHSs on P2P networks by making them safe to use

    DDoS-Capable IoT Malwares: comparative analysis and Mirai Investigation

    Get PDF
    The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far

    Hijacking User Uploads to Online Persistent Data Repositories for Covert Data Exfiltration

    Get PDF
    As malware has evolved over the years, it has gone from harmless programs that copy themselves into other executables to modern day botnets that perform bank fraud and identity theft. Modern malware often has a need to communicate back to the author, or other machines that are also infected. Several techniques for transmitting this data covertly have been developed over the years which vary significantly in their level of sophistication. This research creates a new covert channel technique for stealing information from a network by piggybacking on user-generated network traffic. Specifically, steganography drop boxes and passive covert channels are merged to create a novel covert data exfiltration technique. This technique revolves around altering user supplied data being uploaded to online repositories such as image hosting websites. It specifically targets devices that are often used to generate and upload content to the Internet, such as smartphones. The reliability of this technique is tested by creating a simulated version of Flickr as well as simulating how smartphone users interact with the service. Two different algorithms for recovering the exfiltrated data are compared. The results show a clear improvement for algorithms that are user-aware. The results continue on to compare performance for varying rates of infection of mobile devices and show that performance is proportional to the infection rate

    Darknet as a Source of Cyber Threat Intelligence: Investigating Distributed and Reflection Denial of Service Attacks

    Get PDF
    Cyberspace has become a massive battlefield between computer criminals and computer security experts. In addition, large-scale cyber attacks have enormously matured and became capable to generate, in a prompt manner, significant interruptions and damage to Internet resources and infrastructure. Denial of Service (DoS) attacks are perhaps the most prominent and severe types of such large-scale cyber attacks. Furthermore, the existence of widely available encryption and anonymity techniques greatly increases the difficulty of the surveillance and investigation of cyber attacks. In this context, the availability of relevant cyber monitoring is of paramount importance. An effective approach to gather DoS cyber intelligence is to collect and analyze traffic destined to allocated, routable, yet unused Internet address space known as darknet. In this thesis, we leverage big darknet data to generate insights on various DoS events, namely, Distributed DoS (DDoS) and Distributed Reflection DoS (DRDoS) activities. First, we present a comprehensive survey of darknet. We primarily define and characterize darknet and indicate its alternative names. We further list other trap-based monitoring systems and compare them to darknet. In addition, we provide a taxonomy in relation to darknet technologies and identify research gaps that are related to three main darknet categories: deployment, traffic analysis, and visualization. Second, we characterize darknet data. Such information could generate indicators of cyber threat activity as well as provide in-depth understanding of the nature of its traffic. Particularly, we analyze darknet packets distribution, its used transport, network and application layer protocols and pinpoint its resolved domain names. Furthermore, we identify its IP classes and destination ports as well as geo-locate its source countries. We further investigate darknet-triggered threats. The aim is to explore darknet inferred threats and categorize their severities. Finally, we contribute by exploring the inter-correlation of such threats, by applying association rule mining techniques, to build threat association rules. Specifically, we generate clusters of threats that co-occur targeting a specific victim. Third, we propose a DDoS inference and forecasting model that aims at providing insights to organizations, security operators and emergency response teams during and after a DDoS attack. Specifically, this work strives to predict, within minutes, the attacks’ features, namely, intensity/rate (packets/sec) and size (estimated number of compromised machines/bots). The goal is to understand the future short-term trend of the ongoing DDoS attacks in terms of those features and thus provide the capability to recognize the current as well as future similar situations and hence appropriately respond to the threat. Further, our work aims at investigating DDoS campaigns by proposing a clustering approach to infer various victims targeted by the same campaign and predicting related features. To achieve our goal, our proposed approach leverages a number of time series and fluctuation analysis techniques, statistical methods and forecasting approaches. Fourth, we propose a novel approach to infer and characterize Internet-scale DRDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring DDoS activities using darknet, this work shows that we can extract DoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DRDoS activities such as intensity, rate and geographic location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks and the expectation maximization and k-means clustering techniques in an attempt to identify campaigns of DRDoS attacks. Finally, we conclude this work by providing some discussions and pinpointing some future work
    • …
    corecore