6,677 research outputs found

    A novel equivalent definition of modified Bessel functions for performance analysis of multi-hop wireless communication systems

    Get PDF
    A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-fading. The probability density function and the cumulated density function of the S-R-D link SNR involve modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying scenario in which the destination receives signals from both the relay and the source and processes them using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the destination, accurate and simple analytical expressions for the outage probability, the bit error probability, and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical framework to analyze the performance of the AF cooperative systems with an MRC receiver

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1NcN1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Outage Probability of Dual-Hop Selective AF With Randomly Distributed and Fixed Interferers

    Full text link
    The outage probability performance of a dual-hop amplify-and-forward selective relaying system with global relay selection is analyzed for Nakagami-mm fading channels in the presence of multiple interferers at both the relays and the destination. Two different cases are considered. In the first case, the interferers are assumed to have random number and locations. Outage probability using the generalized Gamma approximation (GGA) in the form of one-dimensional integral is derived. In the second case, the interferers are assumed to have fixed number and locations. Exact outage probability in the form of one-dimensional integral is derived. For both cases, closed-form expressions of lower bounds and asymptotic expressions for high signal-to-interference-plus-noise ratio are also provided. Simplified closed-form expressions of outage probability for special cases (e.g., dominant interferences, i.i.d. interferers, Rayleigh distributed signals) are studied. Numerical results are presented to show the accuracy of our analysis by examining the effects of the number and locations of interferers on the outage performances of both AF systems with random and fixed interferers.Comment: 35 pages, 11 figures, accepted with minor revisions for publication as a regular paper in the IEEE Transactions on Vehicular Technology on 21/09/201

    Half-duplex energy harvesting relay network over different fading environment: System performance with effect of hardware impairment

    Get PDF
    In this paper, we introduce a half-duplex (HD) energy harvesting (EH) relay network over the different fading environment with the effect of hardware impairment (HI). The model system was investigated with the amplify-and-forward (AF) and the power splitting (PS) protocols. The system performance analysis in term of the outage probability (OP), achievable throughput (AT), and bit error rate (BER) were demonstrated with the closed-form expressions. In addition, the power splitting (PS) factor was investigated. We verified the analytical analysis by Monte Carlo simulation with all primary parameters. From the results, we can state that the analytical and simulation results match well with each other.Web of Science911art. no. Unsp 228

    Weighted Sum Rate Maximization for Downlink OFDMA with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper addresses a weighted sum rate (WSR) maximization problem for downlink OFDMA aided by a decode-and-forward (DF) relay under a total power constraint. A novel subcarrier-pair based opportunistic DF relaying protocol is proposed. Specifically, user message bits are transmitted in two time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot. Each unpaired subcarrier in either the first or second slot is used for the source's direct transmission to a user. A benchmark protocol, same as the proposed one except that the transmit beamforming is not used for the relay-aided transmission, is also considered. For each protocol, a polynomial-complexity algorithm is developed to find at least an approximately optimum resource allocation (RA), by using continuous relaxation, the dual method, and Hungarian algorithm. Instrumental to the algorithm design is an elegant definition of optimization variables, motivated by the idea of regarding the unpaired subcarriers as virtual subcarrier pairs in the direct transmission mode. The effectiveness of the RA algorithm and the impact of relay position and total power on the protocols' performance are illustrated by numerical experiments. The proposed protocol always leads to a maximum WSR equal to or greater than that for the benchmark one, and the performance gain of using the proposed one is significant especially when the relay is in close proximity to the source and the total power is low. Theoretical analysis is presented to interpret these observations.Comment: 8 figures, accepted and to be published in IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1301.293
    corecore