1,859 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Unmanned Ground Vehicle

    Full text link
    Due to new developed technology man is leading a comfortable life. People want each work should be done automatically. So in this paper introduces a system called UNMANNED GROUND VEHICLE. UGV as name indicate it operates in contact with ground and without any human resource. The vehicle will have a set of sensors to observe the environment. In this paper for the working of UGV, FPGA is embedded with image processing. FPGA as main processing platform used to control UGV. The performance evaluation of proposed system takes place by capturing the image of UGV with help of camera. This system demonstrate accurate localization of UGV. This UGV vehicle used in military, mall, automobile industry. To work system properly provide proper interfacing and synchronization between hardware/software module

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Neuro-fuzzy techniques to optimize an FPGA embedded controller for robot navigation

    Get PDF
    This paper describes how low-cost embedded controllers for robot navigation can be obtained by using a small number of if-then rules (exploiting the connection in cascade of rule bases) that apply Takagi-Sugeno fuzzy inference method and employ fuzzy sets represented by normalized triangular functions. The rules comprise heuristic and fuzzy knowledge together with numerical data obtained from a geometric analysis of the control problem that considers the kinematic and dynamic constraints of the robot. Numerical data allow tuning the fuzzy symbols used in the rules to optimize the controller performance. From the implementation point of view, very few computational and memory resources are required: standard logical, addition, and multiplication operations and a few data that can be represented by integer values. This is illustrated with the design of a controller for the safe navigation of an autonomous car-like robot among possible obstacles toward a goal configuration. Implementation results of an FPGA embedded system based on a general-purpose soft processor confirm that percentage reduction in clock cycles is drastic thanks to applying the proposed neuro-fuzzy techniques. Simulation and experimental results obtained with the robot confirm the efficiency of the controller designed. Design methodology has been supported by the CAD tools of the environment Xfuzzy 3 and by the Embedded System Tools from Xilinx. © 2014 Elsevier B.V.Peer Reviewe
    • …
    corecore