17,053 research outputs found

    Coordination and Control for a Team of Mobile Robots in an Unknown Dynamic Environment

    Get PDF
    This research presents a dual-level control structure for controlling a mobile robot or a group of robots to navigate through a dynamic environment (such as an object is moving in the workspace of a robot). The higher-level controller operates in cooperation with robot’s state estimation and mapping algorithm, Extended Kalman Filter – Simultaneous Localization and Mapping (EKFSLAM), and the lower-level controller (PID) controls the motion of the robot when it, encounters an obstacle, i.e., it reorients the robot to a predefined rebound angle and move it straight to maneuver around the obstacle until the robot is out of the obstacle range. The higher-level controller jumps in as soon as the robot is out of the obstacle range and moves the robot to the goal. The obstacle avoidance technique involves a novel approach to calculate the rebound angle. Further, the research implements the aforementioned technique to a Leader-Follower formation. Simulation and Experimental results have verified the effectiveness of the proposed control law

    High-Speed Obstacle Avoidance at the Dynamic Limits for Autonomous Ground Vehicles

    Full text link
    Enabling autonomy of passenger-size and larger vehicles is becoming increasingly important in both military and commercial applications. For large autonomous ground vehicles (AGVs), the vehicle dynamics are critical to consider to ensure vehicle safety during obstacle avoidance maneuvers especially at high speeds. This research is concerned with large-size high-speed AGVs with high center of gravity that operate in unstructured environments. The term `unstructured' in this context denotes that there are no lanes or traffic rules to follow. No map of the environment is available a priori. The environment is perceived through a planar light detection and ranging sensor. The mission of the AGV is to move from its initial position to a given target position safely and as fast as possible. In this dissertation, a model predictive control (MPC)-based obstacle avoidance algorithm is developed to achieve the objectives through an iterative simultaneous optimization of the path and the corresponding control commands. MPC is chosen because it offers a rigorous and systematic approach for taking vehicle dynamics and safety constraints into account. Firstly, this thesis investigates the level of model fidelity needed for an MPC-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. Five different representations of vehicle dynamics models are considered. It is concluded that the two Degrees-of-Freedom (DoF) representation that accounts for tire nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm to operate the vehicle at its limits within an environment that includes large obstacles. Secondly, existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a novel nonlinear MPC formulation is developed. First, a new cost function formulation is used that aims to find the shortest path to the target position. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms of obstacle-free regions from an unstructured environment. Third, the no-wheel-lift-off condition is established offline using a fourteen DoF vehicle dynamics model and is included in the MPC formulation. The formulation can simultaneous optimize both steering angle and reference longitudinal speed commands. Simulation results show that the proposed algorithm is capable of safely exploiting the dynamic limits of the vehicle while navigating the vehicle through sensed obstacles of different size and number. Thirdly, in the algorithm, a model of the vehicle is used explicitly to predict and optimize future actions, but in practice, the model parameter values are not exactly known. It is demonstrated that using nominal parameter values in the algorithm leads to safety issues in about one fourth of the evaluated scenarios with the considered parametric uncertainty distributions. To improve the robustness of the algorithm, a novel double-worst-case formulation is developed. Results from simulations with stratified random scenarios and worst-case scenarios show that the double-worst-case formulation considering both the most likely and less likely worst-case scenarios renders the algorithm robust to all uncertainty realizations tested. The trade-off between the robustness and the task completion performance of the algorithm is also quantified. Finally, in addition to simulation-based validation, preliminary experimental validation is also performed. These results demonstrate that the developed algorithm is promising in terms of its capability of avoiding obstacles. Limitations and potential improvements of the algorithm are discussed.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135770/1/ljch_1.pd

    Brain-Computer Interface meets ROS: A robotic approach to mentally drive telepresence robots

    Get PDF
    This paper shows and evaluates a novel approach to integrate a non-invasive Brain-Computer Interface (BCI) with the Robot Operating System (ROS) to mentally drive a telepresence robot. Controlling a mobile device by using human brain signals might improve the quality of life of people suffering from severe physical disabilities or elderly people who cannot move anymore. Thus, the BCI user is able to actively interact with relatives and friends located in different rooms thanks to a video streaming connection to the robot. To facilitate the control of the robot via BCI, we explore new ROS-based algorithms for navigation and obstacle avoidance, making the system safer and more reliable. In this regard, the robot can exploit two maps of the environment, one for localization and one for navigation, and both can be used also by the BCI user to watch the position of the robot while it is moving. As demonstrated by the experimental results, the user's cognitive workload is reduced, decreasing the number of commands necessary to complete the task and helping him/her to keep attention for longer periods of time.Comment: Accepted in the Proceedings of the 2018 IEEE International Conference on Robotics and Automatio

    Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles

    Get PDF
    A leader-follower formation driving algorithm developed for control of heterogeneous groups of unmanned micro aerial and ground vehicles stabilized under a top-view relative localization is presented in this paper. The core of the proposed method lies in a novel avoidance function, in which the entire 3D formation is represented by a convex hull projected along a desired path to be followed by the group. Such a representation of the formation provides non-collision trajectories of the robots and respects requirements of the direct visibility between the team members in environment with static as well as dynamic obstacles, which is crucial for the top-view localization. The algorithm is suited for utilization of a simple yet stable visual based navigation of the group (referred to as GeNav), which together with the on-board relative localization enables deployment of large teams of micro-scale robots in environments without any available global localization system. We formulate a novel Model Predictive Control (MPC) based concept that enables to respond to the changing environment and that provides a robust solution with team members' failure tolerance included. The performance of the proposed method is verified by numerical and hardware experiments inspired by reconnaissance and surveillance missions

    AutonoVi: Autonomous Vehicle Planning with Dynamic Maneuvers and Traffic Constraints

    Full text link
    We present AutonoVi:, a novel algorithm for autonomous vehicle navigation that supports dynamic maneuvers and satisfies traffic constraints and norms. Our approach is based on optimization-based maneuver planning that supports dynamic lane-changes, swerving, and braking in all traffic scenarios and guides the vehicle to its goal position. We take into account various traffic constraints, including collision avoidance with other vehicles, pedestrians, and cyclists using control velocity obstacles. We use a data-driven approach to model the vehicle dynamics for control and collision avoidance. Furthermore, our trajectory computation algorithm takes into account traffic rules and behaviors, such as stopping at intersections and stoplights, based on an arc-spline representation. We have evaluated our algorithm in a simulated environment and tested its interactive performance in urban and highway driving scenarios with tens of vehicles, pedestrians, and cyclists. These scenarios include jaywalking pedestrians, sudden stops from high speeds, safely passing cyclists, a vehicle suddenly swerving into the roadway, and high-density traffic where the vehicle must change lanes to progress more effectively.Comment: 9 pages, 6 figure
    • …
    corecore