98 research outputs found

    A Complementary Resistive Switch-based Crossbar Array Adder

    Full text link
    Redox-based resistive switching devices (ReRAM) are an emerging class of non-volatile storage elements suited for nanoscale memory applications. In terms of logic operations, ReRAM devices were suggested to be used as programmable interconnects, large-scale look-up tables or for sequential logic operations. However, without additional selector devices these approaches are not suited for use in large scale nanocrossbar memory arrays, which is the preferred architecture for ReRAM devices due to the minimum area consumption. To overcome this issue for the sequential logic approach, we recently introduced a novel concept, which is suited for passive crossbar arrays using complementary resistive switches (CRSs). CRS cells offer two high resistive storage states, and thus, parasitic sneak currents are efficiently avoided. However, until now the CRS-based logic-in-memory approach was only shown to be able to perform basic Boolean logic operations using a single CRS cell. In this paper, we introduce two multi-bit adder schemes using the CRS-based logic-in-memory approach. We proof the concepts by means of SPICE simulations using a dynamical memristive device model of a ReRAM cell. Finally, we show the advantages of our novel adder concept in terms of step count and number of devices in comparison to a recently published adder approach, which applies the conventional ReRAM-based sequential logic concept introduced by Borghetti et al.Comment: 12 pages, accepted for IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), issue on Computing in Emerging Technologie

    Cryogenic Memory Technologies

    Full text link
    The surging interest in quantum computing, space electronics, and superconducting circuits has led to new developments in cryogenic data storage technology. Quantum computers promise to far extend our processing capabilities and may allow solving currently intractable computational challenges. Even with the advent of the quantum computing era, ultra-fast and energy-efficient classical computing systems are still in high demand. One of the classical platforms that can achieve this dream combination is superconducting single flux quantum (SFQ) electronics. A major roadblock towards implementing scalable quantum computers and practical SFQ circuits is the lack of suitable and compatible cryogenic memory that can operate at 4 Kelvin (or lower) temperature. Cryogenic memory is also critically important in space-based applications. A multitude of device technologies have already been explored to find suitable candidates for cryogenic data storage. Here, we review the existing and emerging variants of cryogenic memory technologies. To ensure an organized discussion, we categorize the family of cryogenic memory platforms into three types: superconducting, non-superconducting, and hybrid. We scrutinize the challenges associated with these technologies and discuss their future prospects.Comment: 21 pages, 6 figures, 1 tabl

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning

    Leveraging RRAM to Design Efficient Digital Circuits and Systems for Beyond Von Neumann in-Memory Computing

    Get PDF
    Due to the physical separation of their processing elements and storage units, contemporary digital computers are confronted with the thorny memory-wall problem. The strategy of in-memory computing has been considered as a promising solution to overcome the von Neumann bottleneck and design high-performance, energy-efficient computing systems. Moreover, in the post Moore era, post-CMOS technologies have received intense interests for possible future digital logic applications beyond the CMOS scaling limits. Motivated by these perspectives from system level to device level, this thesis proposes two effective processing-in-memory schemes to construct the non-von Neumann systems based on nonvolatile resistive random-access memory (RRAM). In the first scheme, we present functionally complete stateful logic gates based on a CMOS-compatible 2-transistor-2-RRAM (2T2R) structure. In this structure, the programmable logic functionality is determined by the amplitude of operation voltages, rather than its circuit topology. A reconfigurable 3T2R chain with programmable interconnects is used to implement complex combinational logic circuits. The design has a highly regular and symmetric circuit structure, making it easy for design, integration, and fabrication, while the operations are flexible yet clean. Easily integrated as 3-dimensional (3-D) stacked arrays, two proposed memory architectures not only serve as regular 3-D memory arrays but also perform in-memory-computing within the same layer and between the stacked layers. The second scheme leverages hybrid logic in the same hardware to design efficient digital circuits and systems with low computational complexity. Multiple-bit ripple-carry adder (RCA), pipelined RCA, and prefix tree adder are shown as example circuits, using the same regular chain structure, to validate the design efficiency. The design principles, computational complexity, and performance are discussed and compared to the CMOS technology and other state-of-the-art post-CMOS implementations. The overall evaluation shows superior performance in speed and area. The result of the study could build a technology cell library that can be potentially used as input to a technology-mapping algorithm. The proposed hybrid-logic methodology presents prospect of hardware acceleration and future beyond-von Neumann in-memory computing architectures

    HReRAM: A Hybrid Reconfigurable Resistive Random-Access Memory

    Full text link
    • …
    corecore