540 research outputs found

    A selectable-bandwidth 3.5 mW, 0.03 mm(2) self-oscillating Sigma Delta modulator with 71 dB dynamic range at 5 MHz and 65 dB at 10 MHz bandwidth

    Get PDF
    In this paper we present a dual-mode third order continuous time Sigma Delta modulator that combines noise shaping and pulse-width-modulation (PWM). In our 0.18 micro-m CMOS prototype chip the clock frequency equals 1 GHz, but the PWM carrier is only around 125 MHz. By adjusting the loop filter, the ADC bandwidth can be set to 5 or 10 MHz. In the 5 MHz mode the peak SNDR equals 64 dB and the dynamic range 71 dB. In the 10 MHz mode the peak SNDR equals 58 dB and the DR 65 dB. This performance is achieved at an attractively low silicon area of 0.03 mm^2 and a power consumption of 3.5 mW

    Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Get PDF
    The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC) technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits) was achieved

    True high-order VCO-based ADC

    Get PDF
    A novel approach to use a voltage-controlled oscillator (VCO) as the first integrator of a high-order continuous-time delta-sigma modulator (CT-DSM) is presented. In the proposed architecture, the VCO is combined with a digital up-down counter to implement the first integrator of the CT-DSM. Thus, the first integrator is digital-friendly and hence can maximally benefit from technological scaling

    A 13-bit, 2.2-MS/s, 55-mW multibit cascade ΣΔ modulator in CMOS 0.7-μm single-poly technology

    Get PDF
    This paper presents a CMOS 0.7-μm ΣΔ modulator IC that achieves 13-bit dynamic range at 2.2 MS/s with an oversampling ratio of 16. It uses fully differential switched-capacitor circuits with a clock frequency of 35.2 MHz, and has a power consumption of 55 mW. Such a low oversampling ratio has been achieved through the combined usage of fourth-order filtering and multibit quantization. To guarantee stable operation for any input signal and/or initial condition, the fourth-order shaping function has been realized using a cascade architecture with three stages; the first stage is a second-order modulator, while the others are first-order modulators - referred to as a 2-1-1mb architecture. The quantizer of the last stage is 3 bits, while the other quantizers are single bit. The modulator architecture and coefficients have been optimized for reduced sensitivity to the errors in the 3-bit quantization process. Specifically, the 3-bit digital-to-analog converter tolerates 2.8% FS nonlinearity without significant degradation of the modulator performance. This makes the use of digital calibration unnecessary, which is a key point for reduced power consumption. We show that, for a given oversampling ratio and in the presence of 0.5% mismatch, the proposed modulator obtains a larger signal-to-noise-plus-distortion ratio than previous multibit cascade architectures. On the other hand, as compared to a 2-1-1single-bit modulator previously designed for a mixed-signal asymmetrical digital subscriber line modem in the same technology, the modulator in this paper obtains one more bit resolution, enhances the operating frequency by a factor of two, and reduces the power consumption by a factor of four.Comisión Interministerial de Ciencia y Tecnología TIC97-0580European Commission ESPRIT 879

    Multi-bit cascade ΣΔ modulator for high-speed A/D conversion with reduced sensitivity to DAC errors

    Get PDF
    This paper presents a ΣΔ modulator (ΣΔM) which combines single-bit and multi-bit quantization in a cascade architecture to obtain high resolution with low oversampling ratio. It is less sensitive to the non-linearity of the DAC than those previously reported, thus enabling the use of very simple analog circuitry with neither calibration nor trimming required.Comisión Interministerial de Ciencia y Tecnología TIC97-058

    Cascaded feedforward sigma-delta modulator for wide bandwidth applications

    Get PDF
    [[abstract]]A new sigma-delta modulator architecture for wide bandwidth application called cascaded feedforward sigma-delta modulator is proposed in this paper. This sigma-delta modulator is similar to the conventional feedforward summation sigma-delta modulator. The conventional feedforward summation sigma-delta modulator uses multi-bit feedback and therefore a multi-bit digital-to-analog converter (DAC) is needed. Due to the nonlinearity of the multi-bit DAC, it is difficult to be implemented. On the other hand the proposed approach uses 1.5-bit feedback, and thus the implementation of the analog part is much easier than the conventional one. Since the 1.5-bit feedback will cause coarse quantization errors, error cancellation must be done in the digital part. Here an adaptive filter with least mean square algorithm is used to reduce the nonlinear effect. The simulation results show that the signal to noise plus distortion ratio (SNDR) of this architecture is very close to that of the ideal feedforward summation sigma-delta modulator with multi-bit DAC and can be used for the wide bandwidth application.[[notice]]補正完
    corecore