8,660 research outputs found

    Equation-Free Multiscale Computational Analysis of Individual-Based Epidemic Dynamics on Networks

    Full text link
    The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be one of the major challenges nowadays. Detailed atomistic mathematical models play an important role towards this aim. In this work it is shown how one can exploit the Equation Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic simulation with coarse-grained, systems-level, analysis. The methodology provides a systematic approach for analyzing the parametric behavior of complex/ multi-scale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based epidemic model deploying on a random regular connected graph. Using the individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level under a pairwise representation perspective

    Stochastic Prediction of Multi-Agent Interactions from Partial Observations

    Full text link
    We present a method that learns to integrate temporal information, from a learned dynamics model, with ambiguous visual information, from a learned vision model, in the context of interacting agents. Our method is based on a graph-structured variational recurrent neural network (Graph-VRNN), which is trained end-to-end to infer the current state of the (partially observed) world, as well as to forecast future states. We show that our method outperforms various baselines on two sports datasets, one based on real basketball trajectories, and one generated by a soccer game engine.Comment: ICLR 2019 camera read

    PocketCare: Tracking the Flu with Mobile Phones using Partial Observations of Proximity and Symptoms

    Full text link
    Mobile phones provide a powerful sensing platform that researchers may adopt to understand proximity interactions among people and the diffusion, through these interactions, of diseases, behaviors, and opinions. However, it remains a challenge to track the proximity-based interactions of a whole community and then model the social diffusion of diseases and behaviors starting from the observations of a small fraction of the volunteer population. In this paper, we propose a novel approach that tries to connect together these sparse observations using a model of how individuals interact with each other and how social interactions happen in terms of a sequence of proximity interactions. We apply our approach to track the spreading of flu in the spatial-proximity network of a 3000-people university campus by mobilizing 300 volunteers from this population to monitor nearby mobile phones through Bluetooth scanning and to daily report flu symptoms about and around them. Our aim is to predict the likelihood for an individual to get flu based on how often her/his daily routine intersects with those of the volunteers. Thus, we use the daily routines of the volunteers to build a model of the volunteers as well as of the non-volunteers. Our results show that we can predict flu infection two weeks ahead of time with an average precision from 0.24 to 0.35 depending on the amount of information. This precision is six to nine times higher than with a random guess model. At the population level, we can predict infectious population in a two-week window with an r-squared value of 0.95 (a random-guess model obtains an r-squared value of 0.2). These results point to an innovative approach for tracking individuals who have interacted with people showing symptoms, allowing us to warn those in danger of infection and to inform health researchers about the progression of contact-induced diseases

    The state of MIIND

    Get PDF
    MIIND (Multiple Interacting Instantiations of Neural Dynamics) is a highly modular multi-level C++ framework, that aims to shorten the development time for models in Cognitive Neuroscience (CNS). It offers reusable code modules (libraries of classes and functions) aimed at solving problems that occur repeatedly in modelling, but tries not to impose a specific modelling philosophy or methodology. At the lowest level, it offers support for the implementation of sparse networks. For example, the library SparseImplementationLib supports sparse random networks and the library LayerMappingLib can be used for sparse regular networks of filter-like operators. The library DynamicLib, which builds on top of the library SparseImplementationLib, offers a generic framework for simulating network processes. Presently, several specific network process implementations are provided in MIIND: the Wilson–Cowan and Ornstein–Uhlenbeck type, and population density techniques for leaky-integrate-and-fire neurons driven by Poisson input. A design principle of MIIND is to support detailing: the refinement of an originally simple model into a form where more biological detail is included. Another design principle is extensibility: the reuse of an existing model in a larger, more extended one. One of the main uses of MIIND so far has been the instantiation of neural models of visual attention. Recently, we have added a library for implementing biologically-inspired models of artificial vision, such as HMAX and recent successors. In the long run we hope to be able to apply suitably adapted neuronal mechanisms of attention to these artificial models
    • …
    corecore