165 research outputs found

    High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays

    Get PDF
    Microelectrode array recordings of neuronal activity present significant opportunities for studying the brain with single-cell and spike-time precision. However, challenges in device manufacturing constrain dense multisite recordings to two spatial dimensions, whereas access to the three-dimensional (3D) structure of many brain regions appears to remain a challenge. To overcome this limitation, we present two novel recording modalities of silicon-based devices aimed at establishing 3D functionality. First, we fabricated a dual-side electrode array by patterning recording sites on both the front and back of an implantable microstructure. We found that the majority of single-unit spikes could not be simultaneously detected from both sides, suggesting that in addition to providing higher spatial resolution measurements than that of single-side devices, dual-side arrays also lead to increased recording yield. Second, we obtained recordings along three principal directions with a multilayer array and demonstrated 3D spike source localization within the enclosed measurement space. The large-scale integration of such dual-side and multilayer arrays is expected to provide massively parallel recording capabilities in the brain

    Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Get PDF
    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localization using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are... The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localization in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications

    A Multimodal, SU-8-Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology

    Get PDF
    Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks

    Intracranial neuronal ensemble recordings and analysis in epilepsy

    Get PDF
    Pathological neuronal firing was demonstrated 50 years ago as the hallmark of epileptically transformed cortex with the use of implanted microelectrodes. Since then, microelectrodes remained only experimental tools in humans to detect unitary neuronal activity to reveal physiological and pathological brain functions. This recording technique has evolved substantially in the past few decades; however, based on recent human data implying their usefulness as diagnostic tools, we expect a substantial increase in the development of microelectrodes in the near future. Here, we review the technological background and history of microelectrode array development for human examinations in epilepsy, including discussions on of wire-based and microelectrode arrays fabricated using micro-electro-mechanical system (MEMS) techniques and novel future techniques to record neuronal ensemble. We give an overview of clinical and surgical considerations, and try to provide a list of probes on the market with their availability for human recording. Then finally, we briefly review the literature on modulation of single neuron for the treatment of epilepsy, and highlight the current topics under examination that can be background for the future development

    In vivo validation of the electronic depth control probes.

    Get PDF
    In this article, we evaluated the electrophysiological performance of a novel, high-complexity silicon probe array. This brain-implantable probe implements a dynamically reconfigurable voltage-recording device, coordinating large numbers of electronically switchable recording sites, referred to as electronic depth control (EDC). Our results show the potential of the EDC devices to record good-quality local field potentials, and single- and multiple-unit activities in cortical regions during pharmacologically induced cortical slow wave activity in an animal model

    Carbon Fiber Microelectrode Arrays for Neuroprosthetic and Neuroscience Applications.

    Full text link
    The aim of this work is to develop, validate, and characterize the insertion mechanism, tissue response, and recording longevity of a new high-density carbon fiber microelectrode array. This technology was designed to significantly improve the field of penetrating microelectrodes while simultaneously accommodating the variable needs of both neuroscientists and neural engineers. The first study presents the fabrication and insertion dynamics of a high-density carbon fiber electrode array using a dual sided printed circuit board platform. The use of this platform has pushed electrode density to limits not seen in other works. This necessitated the use of an encapsulation method that served to temporarily stiffen the fibers during insertion, but did not enter the brain as many other shuttles do for other probe designs. The initial findings in this work informed the development of an even higher density array using a silicon support structure as a backbone. The second study reports on the tissue reaction of chronically implanted carbon fiber electrode arrays as compared to silicon electrodes. Due to their smaller footprint, the reactive response to carbon fibers should be greatly attenuated, if not non-existent. Results show a scarring response to the implanted silicon electrode with elevated astrocyte and microglia activity coupled to a local decrease in neuronal density. The area implanted with the carbon fiber electrodes showed a varied response, from no detectable increase in astrocytic or microglial activity to an elevated activation of both cell types, but with no detectable scars. Neuronal density in the carbon fiber implant region was unaffected. The data demonstrates that the small carbon fiber profile, even in an array configuration, shows an attenuated reactive response with no visible scaring. The final study reports on the viability of chronically implanted high-density carbon fiber arrays as compared to more traditional silicon planar arrays with comparable site sizes. While most new probe technologies or designs are able to demonstrate proof of concept functionality in acute preparations, very few show the ability to record chronic unit activity. This study aims to provide a comprehensive analysis of electrophysiology data collected over implant durations ranging from 3 – 5 months.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111557/1/parasp_1.pd
    • …
    corecore