261 research outputs found

    Equivalent-Capacity-Based Design of Space-Time Block-Coded Sphere-Packing-Aided Multilevel Coding

    No full text
    A multilevel coding (MLC) scheme invoking sphere packing (SP) modulation combined with space time block coding (STBC) is designed. The coding rates of each of the MLC component codes are determined using the so-called equivalent capacity based constituent-code rate-calculation procedure invoking a 4-dimensional (4D) sphere packing bit-to-symbol mapping scheme. Four different-rate Low-Density Parity Check (LDPC) constituent-codes are used by the MLC scheme. The performance of the resultant equivalent capacity based design is characterized using simulation results. Our results demonstrate an approximately 3.5dB gain over an identical scheme dispensing with SP modulation. Furthermore although a similar performance gain is attained by both the proposed MLC scheme and its benchmarker, which uses a single-class LDPC code, the MLC scheme is preferred, since it benefits from the new classic philosophy of using low-memory, low-complexity component codes as well as providing an unequal error protection capability

    Turbo-Detected Unequal Protection MPEG-4 Wireless Video Telephony using Multi-Level Coding, Trellis Coded Modulation and Space-Time Trellis Coding

    No full text
    Most multimedia source signals are capable of tolerating lossy, rather than lossless delivery to the human eye, ear and other human sensors. The corresponding lossy and preferably low-delay multimedia source codecs however exhibit unequal error sensitivity, which is not the case for Shannon’s ideal entropy codec. This paper proposes a jointly optimised turbo transceiver design capable of providing unequal error protection for MPEG-4 coding aided wireless video telephony. The transceiver investigated consists of space-time trellis coding (STTC) invoked for the sake of mitigating the effects of fading, in addition to bandwidth efficient trellis coded modulation or bit-interleaved coded modulation, combined with a multi-level coding scheme employing either two different-rate non-systematic convolutional codes (NSCs) or two recursive systematic convolutional codes for yielding a twin-class unequal-protection. A single-class protection based benchmark scheme combining STTC and NSC is used for comparison with the unequal-protection scheme advocated. The video performance of the various schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the proposed scheme requires about 2.8 dBs lower transmit power than the benchmark scheme in the context of the MPEG-4 videophone transceiver at a similar decoding complexity

    M-ary Coded Mouldation Assisted Genetic Algorithm Based Multiuser Detection for CDMA Systems

    No full text
    In this contribution we propose a novel M-ary Coded Modulation assisted Genetic Algorithm based Multiuser Detection (CM-GA-MUD) scheme for synchronous CDMA systems. The performance of the proposed scheme was investigated using Quadrature-Phase-Shift-Keying (QPSK), 8-level PSK (8PSK) and 16-level Quadrature Amplitude Modulation (16QAM) when communicating over AWGN and narrowband Rayleigh fading channels. When compared with the optimum MUD scheme, the GAMUD subsystem is capable of reducing the computational complexity significantly. On the other hand, the CM subsystem is capable of obtaining considerable coding gains despite being fed with sub-optimal information provided by the GA-MUD output

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM

    Coded Modulation Assisted Radial Basis Function Aided Turbo Equalisation for Dispersive Rayleigh Fading Channels

    No full text
    In this contribution a range of Coded Modulation (CM) assisted Radial Basis Function (RBF) based Turbo Equalisation (TEQ) schemes are investigated when communicating over dispersive Rayleigh fading channels. Specifically, 16QAM based Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) are evaluated in the context of an RBF based TEQ scheme and a reduced-complexity RBF based In-phase/Quadrature-phase (I/Q) TEQ scheme. The Least Mean Square (LMS) algorithm was employed for channel estimation, where the initial estimation step-size used was 0.05, which was reduced to 0.01 for the second and the subsequent TEQ iterations. The achievable coding gain of the various CM schemes was significantly increased, when employing the proposed RBF-TEQ or RBF-I/Q-TEQ rather than the conventional non-iterative Decision Feedback Equaliser - (DFE). Explicitly, the reduced-complexity RBF-I/Q-TEQ-CM achieved a similar performance to the full-complexity RBF-TEQ-CM, while attaining a significant complexity reduction. The best overall performer was the RBF-I/Q-TEQ-TTCM scheme, requiring only 1.88~dB higher SNR at BER=10-5, than the identical throughput 3~BPS uncoded 8PSK scheme communicating over an AWGN channel. The coding gain of the scheme was 16.78-dB

    Low-complexity soft-decision feedback turbo equalization for multilevel modulations

    Get PDF
    This dissertation proposes two new decision feedback equalization schemes suitable for multilevel modulation systems employing turbo equalization. One is soft-decision feedback equalization (SDFE) that takes into account the reliability of both soft a priori information and soft decisions of the data symbols. The proposed SDFE exhibits lower signal to noise ratio (SNR) threshold that is required for water fall bit error rate (BER) and much faster convergence than the near-optimal exact minimum mean square error linear equalizer (Exact-MMSE-LE) for high-order constellation modulations. The proposed SDFE also offers a low computational complexity compared to the Exact-MMSE-LE. The drawback of the SDFE is that its coefficients cannot reach the matched filter bound (MFB) and therefore after a large number of iterations (e.g. 10), its performance becomes inferior to that of the Exact-MMSE-LE. Therefore, soft feedback intersymbol interference (ISI) canceller-based (SIC) structure is investigated. The SIC structure not only exhibits the same low complexity, low SNR threshold and fast convergence as the SDFE but also reaches the MFB after a large number of iterations. Both theoretical analysis and numerical simulations demonstrate why the SIC achieves MFB while the SDFE cannot. These two turbo equalization structures are also extended from single-input single-output (SISO) systems to multiple-input multiple-output (MIMO) systems and applied in high data-rate underwater acoustic (UWA) communications --Abstract, page iv

    A Turbo-Detection Aided Serially Concatenated MPEG-4/TCM Videophone Transceiver

    No full text
    A Turbo-detection aided serially concatenated inner Trellis Coded Modulation (TCM) scheme is combined with four different outer codes, namely with a Reversible Variable Length Code (RVLC), a Non-Systematic Convolutional (NSC) code a Recursive Systematic Convolutional (RSC) code or a Low Density Parity Check (LDPC) code. These four outer constituent codes are comparatively studied in the context of an MPEG4 videophone transceiver. These serially concatenated schemes are also compared to a stand-alone LDPC coded MPEG4 videophone system at the same effective overall coding rate. The performance of the proposed schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the serially concatenated TCM-NSC scheme was the most attractive one in terms of coding gain and decoding complexity among all the schemes considered in the context of the MPEG4 videophone transceiver. By contrast, the serially concatenated TCM-RSC scheme was found to attain the highest iteration gain among the schemes considered

    On the MIMO Channel Capacity of Multi-Dimensional Signal Sets

    No full text
    In this contribution two general formulae were derived for the capacity evaluation of Multi-Input Multi-Output (MIMO) systems using multi-dimensional signal sets, different modulation schemes and an arbitrary number of transmit as well as receive antennas. It was shown that transmit diversity is capable of narrowing the gap between the capacity of the Rayleigh-fading channel and the AWGN channel. However, since this gap becomes narrower when the receiver diversity order is increased, for higher-order receiver diversity the performance advantage of transmit diversity diminishes. A MIMO system having full multiplexing gain has a higher achievable capacity, than the corresponding MIMO system designed for achieving full diversity gain, provided that the channel SNR is sufficiently high

    Unified bit-based probabilistic data association aided MIMO detection for high-order QAM

    No full text
    A unified Bit-based Probabilistic Data Association (B-PDA) detection approach is proposed for Multiple-Input Multiple-Output (MIMO) systems employing high-order Quadrature Amplitude Modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a Unified Matrix Representation (UMR) of QAM. Both linear natural and nonlinear Gray bit-to-symbol mapping schemes are considered. Our analytical and simulation results demonstrate that the linear natural mapping based B-PDA approach attains an improved detection performance, despite dramatically reducing the computational complexity in contrast to the conventional symbol-based PDA aided MIMO detector. Furthermore, it is shown that the linear natural mapping based B-PDA method is capable of approaching the lower bound performance provided by the nonlinear Gray mapping based B-PDA MIMO detector. Since the linear natural mapping based scheme is simpler and more applicable in practice than its nonlinear Gray mapping based counterpart, we conclude that in the context of the uncoded B-PDA MIMO detector it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping

    Precoder-Aided Iterative Detection Assisted Multilevel Coding and Three-Dimensional EXIT-Chart Analysis

    Get PDF
    A novel three-dimensional (3D) EXIT chart is developed for investigating the iterative behaviour of Multilevel Coding (MLC) invoking Multistage Decoding (MSD). The extrinsic information transfer characteristics of both the symbol-to-bit demapper used and those of the differentprotection constituent decoders suggest that potential improvements can be achieved by appropriately designing the demapper. The proposed 3D EXIT chart is then invoked for studying the precoder-aided multilevel coding scheme employing both MSD and Parallel Independent Decoding (PID) for communicating over AWGN and uncorrelated Rayleigh fading channels with the aid of 8PSK modulation. At BER=10?5, the precoder was capable of enhancing the achievable Eb/N0 performance by 0.5dB to 2.5dB over AWGN and Rayleigh channels, respectively
    corecore