1,009 research outputs found

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History

    Get PDF
    A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH) is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional), 10 CEC2005 benchmark functions (30-dimensional), and a real-world problem (multilevel image segmentation problems). Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests

    Knowledge management overview of feature selection problem in high-dimensional financial data: Cooperative co-evolution and Map Reduce perspectives

    Get PDF
    The term big data characterizes the massive amounts of data generation by the advanced technologies in different domains using 4Vs volume, velocity, variety, and veracity-to indicate the amount of data that can only be processed via computationally intensive analysis, the speed of their creation, the different types of data, and their accuracy. High-dimensional financial data, such as time-series and space-Time data, contain a large number of features (variables) while having a small number of samples, which are used to measure various real-Time business situations for financial organizations. Such datasets are normally noisy, and complex correlations may exist between their features, and many domains, including financial, lack the al analytic tools to mine the data for knowledge discovery because of the high-dimensionality. Feature selection is an optimization problem to find a minimal subset of relevant features that maximizes the classification accuracy and reduces the computations. Traditional statistical-based feature selection approaches are not adequate to deal with the curse of dimensionality associated with big data. Cooperative co-evolution, a meta-heuristic algorithm and a divide-And-conquer approach, decomposes high-dimensional problems into smaller sub-problems. Further, MapReduce, a programming model, offers a ready-To-use distributed, scalable, and fault-Tolerant infrastructure for parallelizing the developed algorithm. This article presents a knowledge management overview of evolutionary feature selection approaches, state-of-The-Art cooperative co-evolution and MapReduce-based feature selection techniques, and future research directions

    A self-organizing weighted optimization based framework for large-scale multi-objective optimization

    Get PDF
    The solving of large-scale multi-objective optimization problem (LSMOP) has become a hot research topic in evolutionary computation. To better solve this problem, this paper proposes a self-organizing weighted optimization based framework, denoted S-WOF, for addressing LSMOPs. Compared to the original framework, there are two main improvements in our work. Firstly, S-WOF simplifies the evolutionary stage into one stage, in which the evaluating numbers of weighted based optimization and normal optimization approaches are adaptively adjusted based on the current evolutionary state. Specifically, regarding the evaluating number for weighted based optimization (i.e., t1), it is larger when the population is in the exploitation state, which aims to accelerate the convergence speed, while t1 is diminishing when the population is switching to the exploration state, in which more attentions are put on the diversity maintenance. On the other hand, regarding the evaluating number for original optimization (i.e., t2), which shows an opposite trend to t1, it is small during the exploitation stage but gradually increases later. In this way, a dynamic trade-off between convergence and diversity is achieved in S-WOF. Secondly, to further improve the search ability in the large-scale decision space, an efficient competitive swarm optimizer (CSO) is implemented in S-WOF, which shows efficiency for solving LSMOPs. Finally, the experimental results have validated the superiority of S-WOF over several state-of-the-art large-scale evolutionary algorithms

    Cultural Algorithm based on Decomposition to solve Optimization Problems

    Get PDF
    Decomposition is used to solve optimization problems by introducing many simple scalar optimization subproblems and optimizing them simultaneously. Dynamic Multi-Objective Optimization Problems (DMOP) have several objective functions and constraints that vary over time. As a consequence of such dynamic changes, the optimal solutions may vary over time, affecting the performance of convergence. In this thesis, we propose a new Cultural Algorithm (CA) based on decomposition (CA/D). The objective of the CA/D algorithm is to decompose DMOP into a number of subproblems that can be optimized using the information shared by neighboring problems. The proposed CA/D approach is evaluated using a number of CEC 2015 optimization benchmark functions. When compared to CA, Multi-population CA (MPCA), and MPCA incorporating game strategies (MPCA-GS), the results obtained showed that CA/D outperformed them in 7 out of the 15 benchmark functions

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    • 

    corecore