35,315 research outputs found

    Generating Video Descriptions with Topic Guidance

    Full text link
    Generating video descriptions in natural language (a.k.a. video captioning) is a more challenging task than image captioning as the videos are intrinsically more complicated than images in two aspects. First, videos cover a broader range of topics, such as news, music, sports and so on. Second, multiple topics could coexist in the same video. In this paper, we propose a novel caption model, topic-guided model (TGM), to generate topic-oriented descriptions for videos in the wild via exploiting topic information. In addition to predefined topics, i.e., category tags crawled from the web, we also mine topics in a data-driven way based on training captions by an unsupervised topic mining model. We show that data-driven topics reflect a better topic schema than the predefined topics. As for testing video topic prediction, we treat the topic mining model as teacher to train the student, the topic prediction model, by utilizing the full multi-modalities in the video especially the speech modality. We propose a series of caption models to exploit topic guidance, including implicitly using the topics as input features to generate words related to the topic and explicitly modifying the weights in the decoder with topics to function as an ensemble of topic-aware language decoders. Our comprehensive experimental results on the current largest video caption dataset MSR-VTT prove the effectiveness of our topic-guided model, which significantly surpasses the winning performance in the 2016 MSR video to language challenge.Comment: Appeared at ICMR 201

    A novel video mining system

    Get PDF

    Action Recognition in Video Using Sparse Coding and Relative Features

    Full text link
    This work presents an approach to category-based action recognition in video using sparse coding techniques. The proposed approach includes two main contributions: i) A new method to handle intra-class variations by decomposing each video into a reduced set of representative atomic action acts or key-sequences, and ii) A new video descriptor, ITRA: Inter-Temporal Relational Act Descriptor, that exploits the power of comparative reasoning to capture relative similarity relations among key-sequences. In terms of the method to obtain key-sequences, we introduce a loss function that, for each video, leads to the identification of a sparse set of representative key-frames capturing both, relevant particularities arising in the input video, as well as relevant generalities arising in the complete class collection. In terms of the method to obtain the ITRA descriptor, we introduce a novel scheme to quantify relative intra and inter-class similarities among local temporal patterns arising in the videos. The resulting ITRA descriptor demonstrates to be highly effective to discriminate among action categories. As a result, the proposed approach reaches remarkable action recognition performance on several popular benchmark datasets, outperforming alternative state-of-the-art techniques by a large margin.Comment: Accepted to CVPR 201

    Mining Mid-level Features for Action Recognition Based on Effective Skeleton Representation

    Get PDF
    Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more discriminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally, frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D
    corecore