16,125 research outputs found

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Distributed coordinate tracking control of multiple wheeled mobile robots

    Get PDF
    In this thesis, distributed coordinate tracking control of multiple wheeled-mobile robots is studied. Control algorithms are proposed for both kinematic and dynamic models. All vehicle agents share the same mechanical structure. The communication topology is leader-follower topology and the reference signal is generated by the virtual leader. We will introduce two common kinematic models of WMR and control algorithms are proposed for both kinematic models with the aid of graph theory. Since it is more realistic that the control inputs are torques so dynamic extension is studied following by the kinematics. Torque controllers are designed with the aid of backstepping method so that the velocities of the mobile robots converge to the desired velocities. Because of the fact that in practice, the inertial parameter of WMR maybe not exactly known or even unknown, so both dynamics with and without inertial uncertainties are considered in this thesis

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M
    corecore