3 research outputs found

    機械学習を用いたコグニティブ無線における変調方式識別に関する研究

    Get PDF
    The current spectrum allocation cannot satisfy the demand for future wireless communications, which prompts extensive studies in search of feasible solutions for the spectrum scarcity. The burden in terms of the spectral efficiency on the radio frequency terminal is intended to be small by cognitive radio (CR) systems that prefer low power transmission, changeable carrier frequencies, and diverse modulation schemes. However, the recent surge in the application of the CR has been accompanied by an indispensable component: the spectrum sensing, to avoid interference towards the primary user. This requirement leads to a complex strategy for sensing and transmission and an increased demand for signal processing at the secondary user. However, the performance of the spectrum sensing can be extended by a robust modulation classification (MC) scheme to distinguish between a primary user and a secondary user along with the interference identification. For instance, the underlying paradigm that enables a concurrent transmission of the primary and secondary links may need a precise measure of the interference that the secondary users cause to the primary users. An adjustment to the transmission power should be made, if there is a change in the modulation of the primary users, implying a noise oor excess at the primary user location; else, the primary user will be subject to interference and a collision may occur.Alternatively, the interweave paradigm that progresses the spectrum efficiency by reusing the allocated spectrum over a temporary space, requires a classification of the intercepted signal into primary and secondary systems. Moreover, a distinction between noise and interference can be accomplished by modulation classification, if spectrum sensing is impossible. Therefore, modulation classification has been a fruitful area of study for over three decades.In this thesis, the modulation classification algorithms using machine learning are investigated while new methods are proposed. Firstly, a supervised machine learning based modulation classification algorithm is proposed. The higher-order cumulants are selected as features, due to its robustness to noise. Stacked denoising autoencoders,which is an extended edition of the neural network, is chosen as the classifier. On one hand stacked pre-train overcomes the shortcoming of local optimization, on the other, denoising function further enhances the anti-noise performance. The performance of this method is compared with the conventional methods in terms of the classification accuracy and execution speed. Secondly, an unsupervised machine learning based modulation classification algorithm is proposed.The features from time-frequency distribution are extracted. Density-based spatial clustering of applications with noise (DBSCAN) is used as the classifier because it is impossible to decide the number of clusters in advance. The simulation reveals that this method has higher classification accuracy than the conventional methods. Moreover, the training phase is unnecessary for this method. Therefore, it has higher workability then supervised method. Finally, the advantages and dis-advantages of them are summarized.For the future work, algorithm optimization is still a challenging task, because the computation capability of hardware is limited. On one hand, for the supervised machine learning, GPU computation is a potential solution for supervised machine learning, to reduce the execution cost. Altering the modulation pool, the network structure has to be redesigned as well. On the other hand, for the unsupervised machine learning, that shifting the symbols to carrier frequency consumes extra computing resources.電気通信大学201

    Joint 1D and 2D Neural Networks for Automatic Modulation Recognition

    Get PDF
    The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O\u27Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these architectures and integrated the models to perform joint detection and classification. To our knowledge, the present research is the first to study and successfully combine a lD ResNet classifier and Yolo v3 object detector to fully automate the process of AMR for parameter estimation, pulse extraction and waveform classification for non-cooperative scenarios. The overall performance of the joint detector/ classifier is 90 at 10 dB signal to noise ratio for 24 digital and analog modulations
    corecore