5,362 research outputs found

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    Cherry-Picking with Reinforcement Learning : Robust Dynamic Grasping in Unstable Conditions

    Full text link
    Grasping small objects surrounded by unstable or non-rigid material plays a crucial role in applications such as surgery, harvesting, construction, disaster recovery, and assisted feeding. This task is especially difficult when fine manipulation is required in the presence of sensor noise and perception errors; errors inevitably trigger dynamic motion, which is challenging to model precisely. Circumventing the difficulty to build accurate models for contacts and dynamics, data-driven methods like reinforcement learning (RL) can optimize task performance via trial and error, reducing the need for accurate models of contacts and dynamics. Applying RL methods to real robots, however, has been hindered by factors such as prohibitively high sample complexity or the high training infrastructure cost for providing resets on hardware. This work presents CherryBot, an RL system that uses chopsticks for fine manipulation that surpasses human reactiveness for some dynamic grasping tasks. By integrating imprecise simulators, suboptimal demonstrations and external state estimation, we study how to make a real-world robot learning system sample efficient and general while reducing the human effort required for supervision. Our system shows continual improvement through 30 minutes of real-world interaction: through reactive retry, it achieves an almost 100% success rate on the demanding task of using chopsticks to grasp small objects swinging in the air. We demonstrate the reactiveness, robustness and generalizability of CherryBot to varying object shapes and dynamics (e.g., external disturbances like wind and human perturbations). Videos are available at https://goodcherrybot.github.io/

    Learning to stop: a unifying principle for legged locomotion in varying environments.

    Get PDF
    Evolutionary studies have unequivocally proven the transition of living organisms from water to land. Consequently, it can be deduced that locomotion strategies must have evolved from one environment to the other. However, the mechanism by which this transition happened and its implications on bio-mechanical studies and robotics research have not been explored in detail. This paper presents a unifying control strategy for locomotion in varying environments based on the principle of 'learning to stop'. Using a common reinforcement learning framework, deep deterministic policy gradient, we show that our proposed learning strategy facilitates a fast and safe methodology for transferring learned controllers from the facile water environment to the harsh land environment. Our results not only propose a plausible mechanism for safe and quick transition of locomotion strategies from a water to land environment but also provide a novel alternative for safer and faster training of robots

    Virtual laboratories for education in science, technology, and engineering: A review

    Get PDF
    Within education, concepts such as distance learning, and open universities, are now becoming more widely used for teaching and learning. However, due to the nature of the subject domain, the teaching of Science, Technology, and Engineering are still relatively behind when using new technological approaches (particularly for online distance learning). The reason for this discrepancy lies in the fact that these fields often require laboratory exercises to provide effective skill acquisition and hands-on experience. Often it is difficult to make these laboratories accessible for online access. Either the real lab needs to be enabled for remote access or it needs to be replicated as a fully software-based virtual lab. We argue for the latter concept since it offers some advantages over remotely controlled real labs, which will be elaborated further in this paper. We are now seeing new emerging technologies that can overcome some of the potential difficulties in this area. These include: computer graphics, augmented reality, computational dynamics, and virtual worlds. This paper summarizes the state of the art in virtual laboratories and virtual worlds in the fields of science, technology, and engineering. The main research activity in these fields is discussed but special emphasis is put on the field of robotics due to the maturity of this area within the virtual-education community. This is not a coincidence; starting from its widely multidisciplinary character, robotics is a perfect example where all the other fields of engineering and physics can contribute. Thus, the use of virtual labs for other scientific and non-robotic engineering uses can be seen to share many of the same learning processes. This can include supporting the introduction of new concepts as part of learning about science and technology, and introducing more general engineering knowledge, through to supporting more constructive (and collaborative) education and training activities in a more complex engineering topic such as robotics. The objective of this paper is to outline this problem space in more detail and to create a valuable source of information that can help to define the starting position for future research

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • …
    corecore