11 research outputs found

    Novel IC designs with 32 nm Independent-Gate FinFET

    Get PDF
    Electrical EngineeringThe semiconductor industry is confronted with serious challenges as the push continues toward scaling transistors into the 22-nm technology node and beyond. The most important among these challenges is the diminishing gate control over the channel, which manifests itself in the form of the increased short-channel effects (SCE) and leakage currents. One approach to countering these effects is introducing new materials for improved performance, either into the gate stack, the channel, or the source/drain extension regions. However, even with the introduction of these new materials, leakage will continue to be a serious problem. Hence, alter device architecture are being explored which processes inherently better robustness to SCE. Among this alternatives, multiple-gate FETs, also known as FinFET or gate wrap-around FETs, are emerging as promising candidates. In a FinFET, the gate wraps around a thin slice of silicon, also known as a ???fin???, and current flows along the top and side surface of the fin. This wrap-around nature of the gate enhances the gate control over the channel, thus reducing the SCE and leakage currents. Furthermore, fabrication of FinFET is compatible with that of conventional CMOS, thus making possible very rapid deployment to manufacturing. From a circuit-design perspective, FinFET provides IC designer with more options to innovate. For instance, FinFET device can directly substitute the CMOS in the existing applications by using the shorted-gate FinFET in which two FinFET gates are tied together. Additionally, the low-power mode of FinFET device in which the back-gate bias is tied to a reverse-bias voltage is often employed in the low-power design in that it can reduce subthreshold leakage. Last but not least, the independent-gate FinFET emerges as an interesting device so that IC designers have a variety of choices to flexibly use the two gates of FinFET for difference tasks. In this thesis, independent-gate FinFET are our concern with two designs being included. The first work presents a novel methodology for IC speed-up in 32nm FinFET. By taking advantage of independently controlling two gates of IG-FinFET, a boosting structures is developed to improve the signal propagation on interconnect significantly. In the second work, a digital voltage sensor design is illustrated. Based on the operation of a p-type FinFET in low-power mode and independent-gate mode, a new technique for designing a controllable delay element (CDE) with high linearity is presented. Then, we develop a 9-bit digital voltage sensor with a voltage range of 0.7 ??? 1.1 V and 50 mV resolution. The proposed voltage sensor can operate with ultra-low power, a wide voltage range, and fairly high frequency.ope

    Process-induced Structural Variability-aware Performance Optimization for Advanced Nanoscale Technologies

    Get PDF
    Department of Electrical EngineeringAs the CMOS technologies reach the nanometer regime through aggressive scaling, integrated circuits (ICs) encounter scaling impediments such as short channel effects (SCE) caused by reduced ability of gate control on the channel and line-edge roughness (LER) caused by limits of the photolithography technologies, leading to serious device parameter fluctuations and makes the circuit analysis difficult. In order to overcome scaling issues, multi-gate structures are introduced from the planar MOSFET to increase the gate controllability. The goal of this dissertation is to analyze structural variations induced by manufacturing process in advanced nanoscale devices and to optimize its impacts in terms of the circuit performances. If the structural variability occurs, aside from the endeavor to reduce the variability, the impact must be taken into account at the design level. Current compact model does not have device structural variation model and cannot capture the impact on the performance/power of the circuit. In this research, the impacts of structural variation in advanced nanoscale technology on the circuit level parameters are evaluated and utilized to find the optimal device shape and structure through technology computer-aided-design (TCAD) simulations. The detail description of this dissertation is as follows: Structural variation for nanoscale CMOS devices is investigated to extend the analysis approach to multi-gate devices. Simple and accurate modeling that analyzes non-rectilinear gate (NRG) CMOS transistors with a simplified trapezoidal approximation method is proposed. The electrical characteristics of the NRG gate, caused by LER, are approximated by a trapezoidal shape. The approximation is acquired by the length of the longest slice, the length of the smallest slice, and the weighting factor, instead of taking the summation of all the slices into account. The accuracy can even be improved by adopting the width-location-dependent factor (Weff). The positive effect of diffusion rounding at the transistor source side of CMOS is then discussed. The proposed simple layout method provides boosting the driving strength of logic gates and also saving the leakage power with a minimal area overhead. The method provides up to 13% speed up and also saves up to 10% leakage current in an inverter simulation by exploiting the diffusion rounding phenomena in the transistors. The performance impacts of the trapezoidal fin shape of a double-gate FinFET are then discussed. The impacts are analyzed with TCAD simulations and optimal trapezoidal angle range is proposed. Several performance metrics are evaluated to investigate the impact of the trapezoidal fin shape on the circuit operation. The simulations show that the driving capability improves, and the gate capacitance increases as the bottom fin width of the trapezoidal fin increases. The fan-out 4 (FO4) inverter and ring-oscillator (RO) delay results indicate that careful optimization of the trapezoidal angle can increase the speed of the circuit because the ratios of the current and capacitance have different impacts depending on the trapezoidal angle. Last but not least, the electrical characteristics of a double-gate-all-around (DGAA) transistor with an asymmetric channel width using device simulations are also investigated in this work. The DGAA FET, a kind of nanotube field-effect transistor (NTFET), can solve the problem of loss of gate controllability of the channel and provide improved short-channel behavior. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, this work proposes the n/p DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional GAA inverter structure. In the optimum structure, 27% propagation delay and 15% leakage power improvement can be achieved. Analysis and optimization for device-level variability are critical in integrated circuit designs of advanced technology nodes. Thus, the proposed methods in this dissertation will be helpful for understanding the relationship between device variability and circuit performance. The research for advanced nanoscale technologies through intensive TCAD simulations, such as FinFET and GAA, suggests the optimal device shape and structure. The results provide a possible solution to design high performance and low power circuits with minimal design overhead.ope

    GeSn semiconductor for micro-nanoelectronic applications

    Get PDF
    Within the last few years the steady electronic evolution lead the semiconductor world to study innovative device architectures and new materials able to replace Si platforms. In this scenario Ge1-xSnx alloy attracts the interest of the scientific community due to its ability to tune the material bandgap as a function of Sn content and its extreme compatibility with Si processing. Although the enhanced optical properties of Ge1-xSnx are evident, the augmented electrical properties such as the higher electron and holes mobility are also beneficial for metal oxide semiconductor. Therefore the alloy is expected to be a potential solution to integrate both electrical and optical devices. On one hand, several theoretical and experimental works depict the Ge1-xSnx alloy as a novel and fascinating solution to replace Si; on the other hand the material novelty forces us to enhance the knowledge of its fundamental physical and chemical properties, re-adapting the processing steps necessary to develop electronic and optical devices. In this dissertation a comprehensive study on Ge1-xSnx has been undertaken and discussed analysing a wide range of topics. The first chapter provides a detailed theoretical study on the electronic properties of the GeSn performed using first principle methods; subsequently the data obtained have been inserted into a TCAD software in order to create and calibrate a library used to simulate electrical devices. It is important to note, that at the beginning of this PhD GeSn was not an available material in the Synopsys device software, and thus it had to be defined from scratch As a next point, since the ever decreasing device size push toward the definition of Ohmic contacts, different stanogermanide films have been thoroughly analysed using various metals (Ni, Pt and Ti) annealed with two distinct methodologies (Rapid Thermal Annealing and Laser Thermal Annealing). Subsequently, considering the material limitation such as the limited thermal budget and the Sn segregation, an exhaustive study on the material doping has been firstly discussed theoretically and after experimentally characterized using both classical ion implantation and layer deposition techniques. The different building blocks of Field Effect Transistors have been investigated and tuned individually with the aim to develop FET devices with bottom up approach. Then, Field Effect Transistor devices using GeSn NWs grown by a VLS methodology with Sn composition ranging from (0.03-0.09 at.%) have been developed and extensively characterized with the state of the art present in literature. Finally the analysis of highly selective etch recipes lead to the development of sub-nm device configuration such as Gate-All-Around (GAA) structure obtained using classical top down lithography approach. The innovative structure was electrically characterized highlighting the possibility to obtain decananometer device architecture with this innovative alloy. Lastly thesis summary and final outlooks were reported with the aim to outline the thesis contribution and the future material investigations

    Degradation Models and Optimizations for CMOS Circuits

    Get PDF
    Die Gewährleistung der Zuverlässigkeit von CMOS-Schaltungen ist derzeit eines der größten Herausforderungen beim Chip- und Schaltungsentwurf. Mit dem Ende der Dennard-Skalierung erhöht jede neue Generation der Halbleitertechnologie die elektrischen Felder innerhalb der Transistoren. Dieses stärkere elektrische Feld stimuliert die Degradationsphänomene (Alterung der Transistoren, Selbsterhitzung, Rauschen, usw.), was zu einer immer stärkeren Degradation (Verschlechterung) der Transistoren führt. Daher erleiden die Transistoren in jeder neuen Technologiegeneration immer stärkere Verschlechterungen ihrer elektrischen Parameter. Um die Funktionalität und Zuverlässigkeit der Schaltung zu wahren, wird es daher unerlässlich, die Auswirkungen der geschwächten Transistoren auf die Schaltung präzise zu bestimmen. Die beiden wichtigsten Auswirkungen der Verschlechterungen sind ein verlangsamtes Schalten, sowie eine erhöhte Leistungsaufnahme der Schaltung. Bleiben diese Auswirkungen unberücksichtigt, kann die verlangsamte Schaltgeschwindigkeit zu Timing-Verletzungen führen (d.h. die Schaltung kann die Berechnung nicht rechtzeitig vor Beginn der nächsten Operation abschließen) und die Funktionalität der Schaltung beeinträchtigen (fehlerhafte Ausgabe, verfälschte Daten, usw.). Um diesen Verschlechterungen der Transistorparameter im Laufe der Zeit Rechnung zu tragen, werden Sicherheitstoleranzen eingeführt. So wird beispielsweise die Taktperiode der Schaltung künstlich verlängert, um ein langsameres Schaltverhalten zu tolerieren und somit Fehler zu vermeiden. Dies geht jedoch auf Kosten der Performanz, da eine längere Taktperiode eine niedrigere Taktfrequenz bedeutet. Die Ermittlung der richtigen Sicherheitstoleranz ist entscheidend. Wird die Sicherheitstoleranz zu klein bestimmt, führt dies in der Schaltung zu Fehlern, eine zu große Toleranz führt zu unnötigen Performanzseinbußen. Derzeit verlässt sich die Industrie bei der Zuverlässigkeitsbestimmung auf den schlimmstmöglichen Fall (maximal gealterter Schaltkreis, maximale Betriebstemperatur bei minimaler Spannung, ungünstigste Fertigung, etc.). Diese Annahme des schlimmsten Falls garantiert, dass der Chip (oder integrierte Schaltung) unter allen auftretenden Betriebsbedingungen funktionsfähig bleibt. Darüber hinaus ermöglicht die Betrachtung des schlimmsten Falles viele Vereinfachungen. Zum Beispiel muss die eigentliche Betriebstemperatur nicht bestimmt werden, sondern es kann einfach die schlimmstmögliche (sehr hohe) Betriebstemperatur angenommen werden. Leider lässt sich diese etablierte Praxis der Berücksichtigung des schlimmsten Falls (experimentell oder simulationsbasiert) nicht mehr aufrechterhalten. Diese Berücksichtigung bedingt solch harsche Betriebsbedingungen (maximale Temperatur, etc.) und Anforderungen (z.B. 25 Jahre Betrieb), dass die Transistoren unter den immer stärkeren elektrischen Felder enorme Verschlechterungen erleiden. Denn durch die Kombination an hoher Temperatur, Spannung und den steigenden elektrischen Feldern bei jeder Generation, nehmen die Degradationphänomene stetig zu. Das bedeutet, dass die unter dem schlimmsten Fall bestimmte Sicherheitstoleranz enorm pessimistisch ist und somit deutlich zu hoch ausfällt. Dieses Maß an Pessimismus führt zu erheblichen Performanzseinbußen, die unnötig und demnach vermeidbar sind. Während beispielsweise militärische Schaltungen 25 Jahre lang unter harschen Bedingungen arbeiten müssen, wird Unterhaltungselektronik bei niedrigeren Temperaturen betrieben und muss ihre Funktionalität nur für die Dauer der zweijährigen Garantie aufrechterhalten. Für letzteres können die Sicherheitstoleranzen also deutlich kleiner ausfallen, um die Performanz deutlich zu erhöhen, die zuvor im Namen der Zuverlässigkeit aufgegeben wurde. Diese Arbeit zielt darauf ab, maßgeschneiderte Sicherheitstoleranzen für die einzelnen Anwendungsszenarien einer Schaltung bereitzustellen. Für fordernde Umgebungen wie Weltraumanwendungen (wo eine Reparatur unmöglich ist) ist weiterhin der schlimmstmögliche Fall relevant. In den meisten Anwendungen, herrschen weniger harsche Betriebssbedingungen (z.B. sorgen Kühlsysteme für niedrigere Temperaturen). Hier können Sicherheitstoleranzen maßgeschneidert und anwendungsspezifisch bestimmt werden, sodass Verschlechterungen exakt toleriert werden können und somit die Zuverlässigkeit zu minimalen Kosten (Performanz, etc.) gewahrt wird. Leider sind die derzeitigen Standardentwurfswerkzeuge für diese anwendungsspezifische Bestimmung der Sicherheitstoleranz nicht gut gerüstet. Diese Arbeit zielt darauf ab, Standardentwurfswerkzeuge in die Lage zu versetzen, diesen Bedarf an Zuverlässigkeitsbestimmungen für beliebige Schaltungen unter beliebigen Betriebsbedingungen zu erfüllen. Zu diesem Zweck stellen wir unsere Forschungsbeiträge als vier Schritte auf dem Weg zu anwendungsspezifischen Sicherheitstoleranzen vor: Schritt 1 verbessert die Modellierung der Degradationsphänomene (Transistor-Alterung, -Selbsterhitzung, -Rauschen, etc.). Das Ziel von Schritt 1 ist es, ein umfassendes, einheitliches Modell für die Degradationsphänomene zu erstellen. Durch die Verwendung von materialwissenschaftlichen Defektmodellierungen werden die zugrundeliegenden physikalischen Prozesse der Degradationsphänomena modelliert, um ihre Wechselwirkungen zu berücksichtigen (z.B. Phänomen A kann Phänomen B beschleunigen) und ein einheitliches Modell für die simultane Modellierung verschiedener Phänomene zu erzeugen. Weiterhin werden die jüngst entdeckten Phänomene ebenfalls modelliert und berücksichtigt. In Summe, erlaubt dies eine genaue Degradationsmodellierung von Transistoren unter gleichzeitiger Berücksichtigung aller essenziellen Phänomene. Schritt 2 beschleunigt diese Degradationsmodelle von mehreren Minuten pro Transistor (Modelle der Physiker zielen auf Genauigkeit statt Performanz) auf wenige Millisekunden pro Transistor. Die Forschungsbeiträge dieser Dissertation beschleunigen die Modelle um ein Vielfaches, indem sie zuerst die Berechnungen so weit wie möglich vereinfachen (z.B. sind nur die Spitzenwerte der Degradation erforderlich und nicht alle Werte über einem zeitlichen Verlauf) und anschließend die Parallelität heutiger Computerhardware nutzen. Beide Ansätze erhöhen die Auswertungsgeschwindigkeit, ohne die Genauigkeit der Berechnung zu beeinflussen. In Schritt 3 werden diese beschleunigte Degradationsmodelle in die Standardwerkzeuge integriert. Die Standardwerkzeuge berücksichtigen derzeit nur die bestmöglichen, typischen und schlechtestmöglichen Standardzellen (digital) oder Transistoren (analog). Diese drei Typen von Zellen/Transistoren werden von der Foundry (Halbleiterhersteller) aufwendig experimentell bestimmt. Da nur diese drei Typen bestimmt werden, nehmen die Werkzeuge keine Zuverlässigkeitsbestimmung für eine spezifische Anwendung (Temperatur, Spannung, Aktivität) vor. Simulationen mit Degradationsmodellen ermöglichen eine Bestimmung für spezifische Anwendungen, jedoch muss diese Fähigkeit erst integriert werden. Diese Integration ist eines der Beiträge dieser Dissertation. Schritt 4 beschleunigt die Standardwerkzeuge. Digitale Schaltungsentwürfe, die nicht auf Standardzellen basieren, sowie komplexe analoge Schaltungen können derzeit nicht mit analogen Schaltungssimulatoren ausgewertet werden. Ihre Performanz reicht für solch umfangreiche Simulationen nicht aus. Diese Dissertation stellt Techniken vor, um diese Werkzeuge zu beschleunigen und somit diese umfangreichen Schaltungen simulieren zu können. Diese Forschungsbeiträge, die sich jeweils über mehrere Veröffentlichungen erstrecken, ermöglichen es Standardwerkzeugen, die Sicherheitstoleranz für kundenspezifische Anwendungsszenarien zu bestimmen. Für eine gegebene Schaltungslebensdauer, Temperatur, Spannung und Aktivität (Schaltverhalten durch Software-Applikationen) können die Auswirkungen der Transistordegradation ausgewertet werden und somit die erforderliche (weder unter- noch überschätzte) Sicherheitstoleranz bestimmt werden. Diese anwendungsspezifische Sicherheitstoleranz, garantiert die Zuverlässigkeit und Funktionalität der Schaltung für genau diese Anwendung bei minimalen Performanzeinbußen

    Design Techniques for Lithography-Friendly Nanometer CMOS Integrated Circuits

    Get PDF
    The Integrated Circuits industry has been a major driver of the outstanding changes and improvements in the modern day technology and life style that we are observing in our day to day life. The continuous scaling of CMOS technology has been one of the major challenges and success stories. However, as the CMOS technology advances deeply into the deep sub-micron technology nodes, the whole industry (both manufacturing and design) is starting to face new challenges. One major challenge is the control of the variation in device parameters. Lithography variations result from the industry incapability to come up with new light sources with a smaller wavelength than ArF source (193 nm wavelength). In this research, we develop better understanding of the photo-lithography variations and their effect on how the design gets patterned. We investigate the state-of-the-art mask correction and design manipulation techniques. We are focusing in our study on the different Optical Proximity Correction (OPC) and design retargeting techniques to assess how we can improve both the functional and parametric yield. Our goal is to achieve a fast and accurate Model Based Re-Targeting (MBRT) technique that can achieve a better functional yield during manufacturing by establishing the techniques to produce more lithography-friendly targets. Moreover, it can be easily integrated into a fab's PDK (due to its relatively high speed) to feedback the exact final printing on wafer to the designers during the early design phase. In this thesis, we focus on two main topics. First is the development of a fast technique that can predict the final mask shape with reasonable accuracy. This is our proposed Model-based Initial Bias (MIB) methodology, in which we develop the full methodology for creating compact models that can predict the perturbation needed to get to an OPC initial condition that is much closer to the final solution. This is very useful in general in the OPC domain, where it can save almost 50% of the OPC runtime. We also use MIB in our proposed Model-Based Retargeting (MBRT) flow to accurately compute lithography hot-spots location and severity. Second, we develop the fast model-based retargeting methodology that is capable of fixing lithography hot spots and improving the functional yield. Moreover, in this methodology we introduce to the first time the concept of distributed retargeting. In distributed MBRT, not only the design portion that is suffering from the hot-spot is moving to get it fixed but also the surrounding designs and design fragments also contribute to the hot-spot fix. Our proposed model-based retargeting methodology also includes the multiple-patterning awareness as well as the electrical-connectivity-awareness (via-awareness). We used Mentor Graphics Calibre Litho-API c-based programing to develop all of the methodologies we explain in this thesis and tested it on 20nm and 10nm nodes

    Supervised Design-Space Exploration

    Get PDF
    Low-cost Very Large Scale Integration (VLSI) electronics have revolutionized daily life and expanded the role of computation in science and engineering. Meanwhile, process-technology scaling has changed VLSI design to an exploration process that strives for the optimal balance among multiple objectives, such as power, performance, and area, i.e. multi-objective Pareto-set optimization. Besides, modern VLSI design has shifted to synthesis-centric methodologies in order to boost the design productivity, which leads to better design quality given limited time and resources. However, current decade-old synthesis-centric design methodologies suffer from: (i) long synthesis tool runtime, (ii) elusive optimal setting of many synthesis knobs, (iii) limitation to one design implementation per synthesis run, and (iv) limited capability of digesting only component-level designs as opposed to holistic system-wide synthesis. These challenges make Design Space Exploration (DSE) with synthesis tools a daunting task for both novice and experienced VLSI designers, thus stagnating the development of more powerful (i.e. more complex) computer systems. To address these challenges, I propose Supervised Design-Space Exploration (SDSE), an abstraction layer between a designer and a synthesis tool, aiming to autonomously supervise synthesis jobs for DSE. For system-level exploration, SDSE can approximate a system Pareto set given limited information: only lightweight component characterization is required, yet the necessary component synthesis jobs are discovered on-the-fly in order to compose the system Pareto set. For component-level exploration, SDSE can approximate a component Pareto set by iteratively refining the approximation with promising knob settings, guided by synthesis-result estimation with machine-learning models. Combined, SDSE has been applied with the three major synthesis stages, namely high-level, logic, and physical synthesis, to the design of heterogeneous accelerator cores as well as high-performance processor cores. In particular, SDSE has been successfully integrated into the IBM Synthesis Tuning System, yielding 20% better circuit performance than the original system on the design of a 22nm server processor that is currently in production. Looking ahead, SDSE can be applied to other VLSI designs beyond the accelerator and the programmable cores. Moreover, SDSE opens several research avenues for: (i) new development and deployment platforms of synthesis tools, (ii) large-scale collaborative design engineering, and (iii) new computer-aided design approaches for new classes of systems beyond VLSI chips

    Design and Optimization of Networks-on-Chip for Future Heterogeneous Systems-on-Chip

    Get PDF
    Due to the tight power budget and reduced time-to-market, Systems-on-Chip (SoC) have emerged as a power-efficient solution that provides the functionality required by target applications in embedded systems. To support a diverse set of applications such as real-time video/audio processing and sensor signal processing, SoCs consist of multiple heterogeneous components, such as software processors, digital signal processors, and application-specific hardware accelerators. These components offer different flexibility, power, and performance values so that SoCs can be designed by mix-and-matching them. With the increased amount of heterogeneous cores, however, the traditional interconnects in an SoC exhibit excessive power dissipation and poor performance scalability. As an alternative, Networks-on-Chip (NoC) have been proposed. NoCs provide modularity at design-time because communications among the cores are isolated from their computations via standard interfaces. NoCs also exploit communication parallelism at run-time because multiple data can be transferred simultaneously. In order to construct an efficient NoC, the communication behaviors of various heterogeneous components in an SoC must be considered with the large amount of NoC design parameters. Therefore, providing an efficient NoC design and optimization framework is critical to reduce the design cycle and address the complexity of future heterogeneous SoCs. This is the thesis of my dissertation. Some existing design automation tools for NoCs support very limited degrees of automation that cannot satisfy the requirements of future heterogeneous SoCs. First, these tools only support a limited number of NoC design parameters. Second, they do not provide an integrated environment for software-hardware co-development. Thus, I propose FINDNOC, an integrated framework for the generation, optimization, and validation of NoCs for future heterogeneous SoCs. The proposed framework supports software-hardware co-development, incremental NoC design-decision model, SystemC-based NoC customization and generation, and fast system protyping with FPGA emulations. Virtual channels (VC) and multiple physical (MP) networks are the two main alternative methods to provide better performance, support quality-of-service, and avoid protocol deadlocks in packet-switched NoC design. To examine the effect of using VCs and MPs with other NoC architectural parameters, I completed a comprehensive comparative analysis that combines an analytical model, synthesis-based designs for both FPGAs and standard-cell libraries, and system-level simulations. Based on the results of this analysis, I developed VENTTI, a design and simulation environment that combines a virtual platform (VP), a NoC synthesis tool, and four NoC models characterized at different abstraction levels. VENTTI facilitates an incremental decision-making process with four NoC abstraction models associated with different NoC parameters. The selected NoC parameters can be validated by running simulations with the corresponding model instantiated in the VP. I augmented this framework to complete FINDNOC by implementing ICON, a NoC generation and customization tool that dynamically combines and customizes synthesizable SystemC components from a predesigned library. Thanks to its flexibility and automatic network interface generation capabilities, ICON can generate a rich variety of NoCs that can be then integrated into any Embedded Scalable Platform (ESP) architectures for fast prototying with FPGA emulations. I designed FINDNOC in a modular way that makes it easy to augmenting it with new capabilities. This, combined with the continuous progress of the ESP design methodology, will provide a seamless SoC integration framework, where the hardware accelerators, software applications, and NoCs can be designed, validated, and integrated simultaneously, in order to reduce the design cycle of future SoC platforms

    A novel methodology for speeding up IC performance in 32nm FinFET

    Get PDF
    This paper presents a novel methodology for IC speed-up in 32nm FinFET. By taking advantage of independently controlling two gates of IG-FinFET, we develop the boosting structures that can improve the signal propagation on interconnect significantly. Furthermore, the circuit area and power dissipation issues are also taken into account. With the addition of boosting path, the full booster can reduce the delay of interconnect as much as 50% while consuming merely more than 18% of power. In the high-speed and low-power IC designs, the proposed boosting structure gives circuit designers several options in the trade-off between the power consumption and high performance which play an important role in application-specific integration circuits in the 22nm node and beyond.open0
    corecore