5,316 research outputs found

    Hydrodynamic instabilities in gaseous detonations: comparison of Euler, Navier–Stokes, and large-eddy simulation

    Get PDF
    A large-eddy simulation is conducted to investigate the transient structure of an unstable detonation wave in two dimensions and the evolution of intrinsic hydrodynamic instabilities. The dependency of the detonation structure on the grid resolution is investigated, and the structures obtained by large-eddy simulation are compared with the predictions from solving the Euler and Navier–Stokes equations directly. The results indicate that to predict irregular detonation structures in agreement with experimental observations the vorticity generation and dissipation in small scale structures should be taken into account. Thus, large-eddy simulation with high grid resolution is required. In a low grid resolution scenario, in which numerical diffusion dominates, the structures obtained by solving the Euler or Navier–Stokes equations and large-eddy simulation are qualitatively similar. When high grid resolution is employed, the detonation structures obtained by solving the Euler or Navier–Stokes equations directly are roughly similar yet equally in disagreement with the experimental results. For high grid resolution, only the large-eddy simulation predicts detonation substructures correctly, a fact that is attributed to the increased dissipation provided by the subgrid scale model. Specific to the investigated configuration, major differences are observed in the occurrence of unreacted gas pockets in the high-resolution Euler and Navier–Stokes computations, which appear to be fully combusted when large-eddy simulation is employed

    A moving grid finite element method applied to a model biological pattern generator

    Get PDF
    Many problems in biology involve growth. In numerical simulations it can therefore be very convenient to employ a moving computational grid on a continuously deforming domain. In this paper we present a novel application of the moving grid finite element method to compute solutions of reaction–diffusion systems in two-dimensional continuously deforming Euclidean domains. A numerical software package has been developed as a result of this research that is capable of solving generalised Turing models for morphogenesis

    The 1999 Center for Simulation of Dynamic Response in Materials Annual Technical Report

    Get PDF
    Introduction: This annual report describes research accomplishments for FY 99 of the Center for Simulation of Dynamic Response of Materials. The Center is constructing a virtual shock physics facility in which the full three dimensional response of a variety of target materials can be computed for a wide range of compressive, ten- sional, and shear loadings, including those produced by detonation of energetic materials. The goals are to facilitate computation of a variety of experiments in which strong shock and detonation waves are made to impinge on targets consisting of various combinations of materials, compute the subsequent dy- namic response of the target materials, and validate these computations against experimental data

    Effective simulation techniques for biological systems

    Get PDF
    In this paper we give an overview of some very recent work on the stochastic simulation of systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the Balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and discuss how novel computing implementations can enhance the performance of these simulations

    Time integration and steady-state continuation for 2d lubrication equations

    Full text link
    Lubrication equations allow to describe many structurin processes of thin liquid films. We develop and apply numerical tools suitable for their analysis employing a dynamical systems approach. In particular, we present a time integration algorithm based on exponential propagation and an algorithm for steady-state continuation. In both algorithms a Cayley transform is employed to overcome numerical problems resulting from scale separation in space and time. An adaptive time-step allows to study the dynamics close to hetero- or homoclinic connections. The developed framework is employed on the one hand to analyse different phases of the dewetting of a liquid film on a horizontal homogeneous substrate. On the other hand, we consider the depinning of drops pinned by a wettability defect. Time-stepping and path-following are used in both cases to analyse steady-state solutions and their bifurcations as well as dynamic processes on short and long time-scales. Both examples are treated for two- and three-dimensional physical settings and prove that the developed algorithms are reliable and efficient for 1d and 2d lubrication equations, respectively.Comment: 33 pages, 16 figure

    Numerical modelling of dynamical systems in isothermal chemical reactions and morphogenesis

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Mathematical models of isothermal chemical systems in reactor problems and Turing's theory of morphogenesis with an application in sea-shell patterning are studied. The reaction-diffusion systems describing these models are solved numerically. First- and second-order difference schemes are developed, which are economical and reliable in comparison to classical numerical methods. The linearization process decouples the reaction-diffusion equations thereby allowing the use of different time steps for each differential equation, which may be large due to the excellent stability properties of the methods. The methods avoid having to solve a non-linear algebraic system at each time step. The schemes are suitable for implementation on a parallel machine.This study is funded by the University of Dokuz Eylul

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described
    • …
    corecore