11,774 research outputs found

    Neurophysiologic diagnosis, clinical symptoms and neuropathologic findings in polyneuropathies

    Get PDF
    Tausta: Polyneuropatia (PNP) on ääreishermoston sairaus, joka aiheuttaa laaja-alaisia, yleensä symmetrisiä vaurioita ääreishermostossa. PNP:aan johtavia syitä on satoja. Tavoitteet: Löytää parhaat neurofysiologiset menetelmät uremian, myelooman hoidossa käytettävän talidomidin sekä Fabryn taudin aiheuttaman PNP:n diagnosoimiseksi. Fabryn taudissa tutkin lisäksi ohutsäieneuropatian aiheuttamia neuropatologisia löydöksiä iholta otetusta koepalasta. Tutkimuksissa kartoitettiin lisäksi PNP:n aiheuttamien subjektiivisten oireiden korrelaatio neurofysiologisten ja neuropatologisten löydösten kanssa. Munuaisten vajaatoimintaa sairastavilla potilailla tavoitteena oli tutkia dialyysihoidon tehon vaikutusta autonomisen hermoston toimintaan sekä yhden dialyysikerran vaikutusta neurofysiologisiin löydöksiin. Aineisto ja menetelmät: I: Tutkittiin 21 uremiapotilaan sensoristen ja motoristen hermojen vasteet, värinä- sekä lämpötuntokynnykset ennen ja jälkeen hemodialyysin. Subjektiiviset PNP oireet kartoitettiin PNP oireita kysyvillä kaavakkeella. II:12 talidomidi hoitoa saavaa myeloomapotilasta, tutkimuksen menetelmät olivat samat kuin tutkimuksessa I. III: 12 Fabryn tautia sairastavaa potilasta, edellä mainittujen neurofysiologisten tutkimusten lisäksi potilailta otettiin ihobiopsia säären alueelta. Ihobiopsiasta laskettiin ohuiden hermosyiden määrä koepalan värjäyksen jälkeen. Subjektiiviset PNP oireet kartoitettiin kyselykaavakkeella. Sydämen sykevaihtelu tutkittiin levossa taajuustason analyysillä. IV: 32 uremiapotilaan autonomisen hermoston toimintaa tutkittiin sydämen sykevaihtelun aikatason analysillä, paksujen myelinoituneiden säikeiden toimintaa tutkittiin perifeeristen sensoristen hermojen mittauksilla toistetusti noin 2.9 vuoden aikana. Tulokset: Ureemisen PNP:n diagnostiikassa herkimmät tutkimukset ovat F-aaltojen parametrit alaraajojen motorisista hermoista, värinätuntokynnys alaraajoista sekä suralishermon amplitudi. Positiiviset PNP oireet uremiassa korreloivat värinätunto-kynnyksen sekä sensoristen hermojen neurografialöydösten kanssa. Neurofysiologisten tutkimusten ajankohdalla dialyysiajankohtaan nähden ei ole merkitystä. Talidomidi-PNP on pääasiassa sensorinen, mutta motoriset syyt ovat lievästi vaurioituneet. Talidomidi PNP:ssa subjektiiviset oireet korreloivat huonosti neurofysiologisten löydösten kanssa. Fabryn taudissa naisilla on oletettua enemmän ohutsäieneuropatian aiheuttamia oireita ja löydöksiä. Paksujen säikeiden löydöksiä ei tullut esiin. Ohutsäieneuropatian diagnostiikassa ihobiopsia ja kvantitatiiviset tuntokynnysmittaustestit täydentävät toisiaan. Tehokas dialyysi parantaa autonomisen hermoston toimintaa uremiapotilailla. Päätelmät: Erityyppisten polyneuropatioiden diagnostiikassa pitää etukäteen valita PNP tyypille oikeat tutkimusmenetelmät raskaiden tutkimuspatterien vähentämiseksi sekä diagnostiikan parantamiseksi. PNP:n aiheuttamat oireet ja kliiniset löydökset pitää aina tutkia, mutta yksin ne eivät ole herkkiä PNP:n diagnostiikassa.Backround: Polyneuropathy (PNP) is a disorder of the peripheral nervous system that causes widespread, usually symmetric, abnormalities of peripheral nerves. Numerous underlying conditions can cause PNP. Aims: To evaluate the subjective PNP symptoms and the most useful neurophysiologic tests for the diagnosis of uremic PNP, thalidomide induced PNP in myeloma patients, and PNP in Fabry disease. Another aspect of the study was to determine the correlation between subjective symptoms and neurophysiologic and neuropathologic findings in patients with PNP. In uremic patients, the aim was also to study the effect of one dialysis session on neurophysiologic parameters. Also the effect of dialysis on the function of autonomic nervous system was evaluated. Subjects and methods: (I) 21 uremic patients, sensory and motor conduction studies, vibratory- and thermal detection thresholds before and after dialysis. The clinical findings and subjective symptoms were studied using a standardized questionnaire. (II) 12 myeloma patients with thalidomide therapy, the methods were the same as in study I. (III) 12 patients with Fabry disease, same methods as in studies I and II, also skin biopsy for the detection of intraepidermal nerve fibre density. (IV) 32 uremic patients, autonomic nervous system was studied with time-domain measures, thick myelinated fibers were studied with sensory neurography. Results: The F- wave parameters, vibratory perception threshold from lower limbs, and the sural amplitude were the best parameters in the diagnosis of uremic PNP. Positive PNP symptoms in uremic patients correlated with vibratory perception threshold and sensory neurography. The neurophysiologic test can be done either before or after dialysis. Thalidomide PNP is predominantly sensory, but motor fibers are also slightly affected. The subjective sensory PNP symptoms did not correlate with neurophysiologic findings. In Fabry disease, women had more PNP symptoms than expected. Thick myelinated fibers are not affected in Fabry disease. In the diagnosis of small-fibre PNP, the skin biopsy and quantitative sensory tests complement each other. Effective dialysis therapy had a positive effect to cardiac autonomic function. Conclusions: When diagnosing PNP, it is important to use standardized neurophysiologic tests that reflect the function of different types of nerve fibres. These tests should have proper reference values and they should be sensitive in detecting the particular type of PNP that is suspected. The patient’s subjective symptoms, family history and clinical findings give valuable information, and should always be evaluated together with the neurophysiologic tests.Siirretty Doriast

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Myoclonus and other jerky movement disorders

    Get PDF
    Myoclonus and other jerky movements form a large heterogeneous group of disorders. Clinical neurophysiology studies can have an important contribution to support diagnosis but also to gain insight in the pathophysiology of different kind of jerks. This review focuses on myoclonus, tics, startle disorders, restless legs syndrome, and periodic leg movements during sleep. Myoclonus is defined as brief, shock-like movements, and subtypes can be classified based the anatomical origin. Both the clinical phenotype and the neurophysiological tests support this classification: cortical, cortical-subcortical, subcortical/non-segmental, segmental, peripheral, and functional jerks. The most important techniques used are polymyography and the combination of electromyography-electroencephalography focused on jerk-locked back-averaging, cortico-muscular coherence, and the Bereitschaftspotential. Clinically, the differential diagnosis of myoclonus includes tics, and this diagnosis is mainly based on the history with premonitory urges and the ability to suppress the tic. Electrophysiological tests are mainly applied in a research setting and include the Bereitschaftspotential, local field potentials, transcranial magnetic stimulation, and pre-pulse inhibition. Jerks due to a startling stimulus form the group of startle syndromes. This group includes disorders with an exaggerated startle reflex, such as hyperekplexia and stiff person syndrome, but also neuropsychiatric and stimulus-induced disorders. For these disorders polymyography combined with a startling stimulus can be useful to determine the pattern of muscle activation and thus the diagnosis. Assessment of symptoms in restless legs syndrome and periodic leg movements during sleep can be performed with different validated scoring criteria with the help of electromyography

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 145

    Get PDF
    This bibliography lists 301 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1975

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed

    Neurophysiological effects of ischaemia

    Get PDF
    Spinal cord injury (SCI) and paralysis remains a tragic complication of thoraco-abdominal aortic aneurysm (TAAA) surgery, despite advances in surgical and medical management. A survey of vascular anaesthetists showed availability of intra-operative spinal cord monitoring to detect an injury and subsequently guide remedial interventions, is variable across the United Kingdom and Ireland, despite clear evidence of its benefit. This research sought to explore the potential benefits of transcranial magnetic stimulation (TMS) and near infrared spectroscopy (NIRS) as alternative, more accessible monitors of ischaemic SCI. TAAA surgery has several nuances that required greater investigation if TMS was to be utilised in theatre. Firstly, the motor evoked potentials (MEPs) of peripheral vascular disease (PVD) patients were characterised. PVD is the primary pathology underlying TAAA and the MEPs of this cohort of patients showed no difference beyond that which would accountable by aging compared to healthy, younger controls. Also, it was demonstrated that over an hour of repeated single-pulse TMS, a time-frame similar to when the spinal cord is at greatest risk intra-operatively and a need for intense monitoring, the variability of the MEPs was no different to controls. A second feature of TAAA surgery is the need to render the surgical field bloodless, thus providing a clear operative space for the surgeons to work in. This is achieved using arterial clamps, the unintended consequence of which is an ischaemic nerve block (INB). An INB has been used as a research tool to initiate changes in cortical excitability. Deafferentation of distal limb structures and subsequent disinhibition of the motor cortical output to non-ischaemic muscles ipsilateral to the INB, manifested as increased MEPs. Through the use of a novel, low pressure INB applied to the lower limb, an increase in MEP amplitude in muscles proximal to the INB occurred. It was further shown that this increase in cortical excitability extended to the contralateral legs muscles and to arm muscles. Simultaneous recordings of somatosensory evoked potentials (SSEP) from stimulation of the tibial nerve, also distal to the INB, demonstrated a reduction in SSEP amplitude but not a complete deafferentation as previously assumed. Investigations into the mechanisms underlying these finding was then performed. Using quantitative sensory testing whilst an INB was performed, the loss of Aβ and Aδ indicated the deafferentation required to initiate changes in motor cortical excitability. The preservation of C-fibre function could account for the unexpected finding where participants with exaggerated punctate sensation had greater increases in MEPs and possible cortical excitability. Paired-pulse TMS paradigms explored the potential neuronal networks responsible for the increase in MEPs of the contralateral muscles. A reduction in interhemispheric inhibition was seen from the deafferented motor cortex to the intact motor cortex, whilst no change in intrahemispheric pathways was seen. The final chapter of this thesis explores the use of TMS and NIRS under surgical conditions. Despite numerous obstacles to patient recruitment, not withstanding a pandemic, a case series is presented with meaningful data which can be used to guide future study. Under the correct anaesthetic regimen, TMS induced MEPs can be recorded. The limited sample size was unable to determine if changes in cortical excitability occur in these conditions during surgery utilising a thigh INB however. In the second clinical investigation, NIRS was used to measure paraspinal muscle oxygen saturations levels (rO2), believed to correlate with intra-spinal oxygenation. This was performed alongside traditional intraoperative neuromonitoring of spinal cord with transcranial electrical stimulation (TES) MEPs. Paraspinal rO2 appeared to follow changes in the haemodynamic status of the patients, where a low rO2 would reflect a low blood pressure. One patient experienced a paraparesis, with a recoverable reduction in MEP amplitude and paraspinal rO2. Another patient who later died without clinical confirmation of paralysis, had a precipitous and permanent reduction in both MEPs and rO2, likely reflecting a SCI. A third patient where a decrease in MEPs and paraspinal rO2 was seen had remedial interventions initiated to prevent a possible SCI, which resulted in a return of both measures close to baseline. Future work should look to explore the changes in cortical excitability secondary to iatrogenic limb ischaemic during TAAA surgery and how this impacts TMS-induced MEP characteristics and their interpretation in detecting a SCI. It should also explore their use alongside NIRS to detect both intra-operative and post-operative SCI and to guide their management.Open Acces
    • …
    corecore