225 research outputs found

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    A speaker rediarization scheme for improving diarization in large two-speaker telephone datasets

    Get PDF
    In this paper we propose a novel scheme for carrying out speaker diarization in an iterative manner. We aim to show that the information obtained through the first pass of speaker diarization can be reused to refine and improve the original diarization results. We call this technique speaker rediarization and demonstrate the practical application of our rediarization algorithm using a large archive of two-speaker telephone conversation recordings. We use the NIST 2008 SRE summed telephone corpora for evaluating our speaker rediarization system. This corpus contains recurring speaker identities across independent recording sessions that need to be linked across the entire corpus. We show that our speaker rediarization scheme can take advantage of inter-session speaker information, linked in the initial diarization pass, to achieve a 30% relative improvement over the original diarization error rate (DER) after only two iterations of rediarization

    Robust speaker diarization for meetings

    Get PDF
    Aquesta tesi doctoral mostra la recerca feta en l'àrea de la diarització de locutor per a sales de reunions. En la present s'estudien els algorismes i la implementació d'un sistema en diferit de segmentació i aglomerat de locutor per a grabacions de reunions a on normalment es té accés a més d'un micròfon per al processat. El bloc més important de recerca s'ha fet durant una estada al International Computer Science Institute (ICSI, Berkeley, Caligornia) per un període de dos anys.La diarització de locutor s'ha estudiat força per al domini de grabacions de ràdio i televisió. La majoria dels sistemes proposats utilitzen algun tipus d'aglomerat jeràrquic de les dades en grups acústics a on de bon principi no se sap el número de locutors òptim ni tampoc la seva identitat. Un mètode molt comunment utilitzat s'anomena "bottom-up clustering" (aglomerat de baix-a-dalt), amb el qual inicialment es defineixen molts grups acústics de dades que es van ajuntant de manera iterativa fins a obtenir el nombre òptim de grups tot i acomplint un criteri de parada. Tots aquests sistemes es basen en l'anàlisi d'un canal d'entrada individual, el qual no permet la seva aplicació directa per a reunions. A més a més, molts d'aquests algorisms necessiten entrenar models o afinar els parameters del sistema usant dades externes, el qual dificulta l'aplicabilitat d'aquests sistemes per a dades diferents de les usades per a l'adaptació.La implementació proposada en aquesta tesi es dirigeix a solventar els problemes mencionats anteriorment. Aquesta pren com a punt de partida el sistema existent al ICSI de diarització de locutor basat en l'aglomerat de "baix-a-dalt". Primer es processen els canals de grabació disponibles per a obtindre un sol canal d'audio de qualitat major, a més dínformació sobre la posició dels locutors existents. Aleshores s'implementa un sistema de detecció de veu/silenci que no requereix de cap entrenament previ, i processa els segments de veu resultant amb una versió millorada del sistema mono-canal de diarització de locutor. Aquest sistema ha estat modificat per a l'ús de l'informació de posició dels locutors (quan es tingui) i s'han adaptat i creat nous algorismes per a que el sistema obtingui tanta informació com sigui possible directament del senyal acustic, fent-lo menys depenent de les dades de desenvolupament. El sistema resultant és flexible i es pot usar en qualsevol tipus de sala de reunions pel que fa al nombre de micròfons o la seva posició. El sistema, a més, no requereix en absolute dades d´entrenament, sent més senzill adaptar-lo a diferents tipus de dades o dominis d'aplicació. Finalment, fa un pas endavant en l'ús de parametres que siguin mes robusts als canvis en les dades acústiques. Dos versions del sistema es van presentar amb resultats excel.lents a les evaluacions de RT05s i RT06s del NIST en transcripció rica per a reunions, a on aquests es van avaluar amb dades de dos subdominis diferents (conferencies i reunions). A més a més, es fan experiments utilitzant totes les dades disponibles de les evaluacions RT per a demostrar la viabilitat dels algorisms proposats en aquesta tasca.This thesis shows research performed into the topic of speaker diarization for meeting rooms. It looks into the algorithms and the implementation of an offline speaker segmentation and clustering system for a meeting recording where usually more than one microphone is available. The main research and system implementation has been done while visiting the International Computes Science Institute (ICSI, Berkeley, California) for a period of two years. Speaker diarization is a well studied topic on the domain of broadcast news recordings. Most of the proposed systems involve some sort of hierarchical clustering of the data into clusters, where the optimum number of speakers of their identities are unknown a priory. A very commonly used method is called bottom-up clustering, where multiple initial clusters are iteratively merged until the optimum number of clusters is reached, according to some stopping criterion. Such systems are based on a single channel input, not allowing a direct application for the meetings domain. Although some efforts have been done to adapt such systems to multichannel data, at the start of this thesis no effective implementation had been proposed. Furthermore, many of these speaker diarization algorithms involve some sort of models training or parameter tuning using external data, which impedes its usability with data different from what they have been adapted to.The implementation proposed in this thesis works towards solving the aforementioned problems. Taking the existing hierarchical bottom-up mono-channel speaker diarization system from ICSI, it first uses a flexible acoustic beamforming to extract speaker location information and obtain a single enhanced signal from all available microphones. It then implements a train-free speech/non-speech detection on such signal and processes the resulting speech segments with an improved version of the mono-channel speaker diarization system. Such system has been modified to use speaker location information (then available) and several algorithms have been adapted or created new to adapt the system behavior to each particular recording by obtaining information directly from the acoustics, making it less dependent on the development data.The resulting system is flexible to any meetings room layout regarding the number of microphones and their placement. It is train-free making it easy to adapt to different sorts of data and domains of application. Finally, it takes a step forward into the use of parameters that are more robust to changes in the acoustic data. Two versions of the system were submitted with excellent results in RT05s and RT06s NIST Rich Transcription evaluations for meetings, where data from two different subdomains (lectures and conferences) was evaluated. Also, experiments using the RT datasets from all meetings evaluations were used to test the different proposed algorithms proving their suitability to the task.Postprint (published version

    Towards a complete Binary Key System for the Speaker Diarization Task

    Get PDF
    International audienceSpeaker diarization is the task of partitioning an audio stream into homogeneous segments according to speaker identity. Today state-of-the-art speaker diarization systems have achieved very competitive performance. However, any small improvement in Diarization Error Rate (DER) is usually subject to very large processing times (real time factor above one), which makes systems not suitable for some time-critical, real-life applications. Recently, a novel fast speaker diarization technique based on speaker modeling using binary keys was presented. The proposed technique speeds up the process up to ten times faster than real-time with little increase of DER. Although the approach shows great potential, the presented results are still preliminary. The goal of this paper is to further investigate this technique, in order to move towards a complete binary-key based system for the speaker diarization task. Preliminary experiments in Speech Activity Detection (SAD) based on binary keys show the feasibility of the binary key modeling approach for this task. Furthermore, the system has been tested on two different kinds of test data: meeting audio recordings and TV shows. The experiments carried out on NIST RT05 and REPERE databases show promising results and indicate that there is still room for further improvement

    Autonomous Learning of Speaker Identity and WiFi Geofence From Noisy Sensor Data

    Get PDF
    A fundamental building block towards intelligent environments is the ability to understand who is present in a certain area. A ubiquitous way of detecting this is to exploit unique vocal characteristics as people interact with one another in common spaces. However, manually enrolling users into a biometric database is time-consuming and not robust to vocal deviations over time. Instead, consider audio features sampled during a meeting, yielding a noisy set of possible voiceprints. With a number of meetings and knowledge of participation, e.g., sniffed wireless Media Access Control (MAC) addresses, can we learn to associate a specific identity with a particular voiceprint? To address this problem, this paper advocates an Internet of Things (IoT) solution and proposes to use co-located WiFi as supervisory weak labels to automatically bootstrap the labelling process. In particular, a novel cross-modality labelling algorithm is proposed that jointly optimises the clustering and association process, which solves the inherent mismatching issues arising from heterogeneous sensor data. At the same time, we further propose to reuse the labelled data to iteratively update wireless geofence models and curate device specific thresholds. Extensive experimental results from two different scenarios demonstrate that our proposed method is able to achieve 2-fold improvement in labelling compared with conventional methods and can achieve reliable speaker recognition in the wild

    SCAN : learning speaker identity from noisy sensor data

    Get PDF
    Sensor data acquired from multiple sensors simultaneously is featuring increasingly in our evermore pervasive world. Buildings can be made smarter and more efficient, spaces more responsive to users. A fundamental building block towards smart spaces is the ability to understand who is present in a certain area. A ubiquitous way of detecting this is to exploit the unique vocal features as people interact with one another. As an example, consider audio features sampled during a meeting, yielding a noisy set of possible voiceprints. With a number of meetings and knowledge of participation (e.g. through a calendar or MAC address), can we learn to associate a specific identity with a particular voiceprint? Obviously enrolling users into a biometric database is time-consuming and not robust to vocal deviations over time. To address this problem, the standard approach is to perform a clustering step (e.g. of audio data) followed by a data association step, when identity-rich sensor data is available. In this paper we show that this approach is not robust to noise in either type of sensor stream; to tackle this issue we propose a novel algorithm that jointly optimises the clustering and association process yielding up to three times higher identification precision than approaches that execute these steps sequentially. We demonstrate the performance benefits of our approach in two case studies, one with acoustic and MAC datasets that we collected from meetings in a non-residential building, and another from an online dataset from recorded radio interviews
    • …
    corecore