5,554 research outputs found

    DataSpread: Unifying Databases and Spreadsheets.

    Get PDF
    Spreadsheet software is often the tool of choice for ad-hoc tabular data management, processing, and visualization, especially on tiny data sets. On the other hand, relational database systems offer significant power, expressivity, and efficiency over spreadsheet software for data management, while lacking in the ease of use and ad-hoc analysis capabilities. We demonstrate DataSpread, a data exploration tool that holistically unifies databases and spreadsheets. It continues to offer a Microsoft Excel-based spreadsheet front-end, while in parallel managing all the data in a back-end database, specifically, PostgreSQL. DataSpread retains all the advantages of spreadsheets, including ease of use, ad-hoc analysis and visualization capabilities, and a schema-free nature, while also adding the advantages of traditional relational databases, such as scalability and the ability to use arbitrary SQL to import, filter, or join external or internal tables and have the results appear in the spreadsheet. DataSpread needs to reason about and reconcile differences in the notions of schema, addressing of cells and tuples, and the current pane (which exists in spreadsheets but not in traditional databases), and support data modifications at both the front-end and the back-end. Our demonstration will center on our first and early prototype of the DataSpread, and will give the attendees a sense for the enormous data exploration capabilities offered by unifying spreadsheets and databases

    A survey of RDB to RDF translation approaches and tools

    Get PDF
    ISRN I3S/RR 2013-04-FR 24 pagesRelational databases scattered over the web are generally opaque to regular web crawling tools. To address this concern, many RDB-to-RDF approaches have been proposed over the last years. In this paper, we propose a detailed review of seventeen RDB-to-RDF initiatives, considering end-to-end projects that delivered operational tools. The different tools are classified along three major axes: mapping description language, mapping implementation and data retrieval method. We analyse the motivations, commonalities and differences between existing approaches. The expressiveness of existing mapping languages is not always sufficient to produce semantically rich data and make it usable, interoperable and linkable. We therefore briefly present various strategies investigated in the literature to produce additional knowledge. Finally, we show that R2RML, the W3C recommendation for describing RDB to RDF mappings, may not apply to all needs in the wide scope of RDB to RDF translation applications, leaving space for future extensions

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Querying Schemas With Access Restrictions

    Full text link
    We study verification of systems whose transitions consist of accesses to a Web-based data-source. An access is a lookup on a relation within a relational database, fixing values for a set of positions in the relation. For example, a transition can represent access to a Web form, where the user is restricted to filling in values for a particular set of fields. We look at verifying properties of a schema describing the possible accesses of such a system. We present a language where one can describe the properties of an access path, and also specify additional restrictions on accesses that are enforced by the schema. Our main property language, AccLTL, is based on a first-order extension of linear-time temporal logic, interpreting access paths as sequences of relational structures. We also present a lower-level automaton model, Aautomata, which AccLTL specifications can compile into. We show that AccLTL and A-automata can express static analysis problems related to "querying with limited access patterns" that have been studied in the database literature in the past, such as whether an access is relevant to answering a query, and whether two queries are equivalent in the accessible data they can return. We prove decidability and complexity results for several restrictions and variants of AccLTL, and explain which properties of paths can be expressed in each restriction.Comment: VLDB201
    corecore