60 research outputs found

    Comparison and Evaluation of Deadlock Prevention Methods for Different Size Automated Manufacturing Systems

    Get PDF
    In automated manufacturing systems (AMSs), deadlocks problems can arise due to limited shared resources. Petri nets are an effective tool to prevent deadlocks in AMSs. In this paper, a simulation based on existing deadlock prevention policies and different Petri net models are considered to explore whether a permissive liveness-enforcing Petri net supervisor can provide better time performance. The work of simulation is implemented as follows. (1) Assign the time to the controlled Petri net models, which leads to timed Petri nets. (2) Build the Petri net model using MATLAB software. (3) Run and simulate the model, and simulation results are analyzed to determine which existing policies are suitable for different systems. Siphons and iterative methods are used for deadlocks prevention. Finally, the computational results show that the selected deadlock policies may not imply high resource utilization and plant productivity, which have been shown theoretically in previous publications. However, for all selected AMSs, the iterative methods always lead to structurally and computationally complex liveness-enforcing net supervisors compared to the siphons methods. Moreover, they can provide better behavioral permissiveness than siphons methods for small systems. For large systems, a strict minimal siphon method leads to better behavioral permissiveness than the other methods

    Towards semantics-driven modelling and simulation of context-aware manufacturing systems

    Get PDF
    Systems modelling and simulation are two important facets for thoroughly and effectively analysing manufacturing processes. The ever-growing complexity of the latter, the increasing amount of knowledge, and the use of Semantic Web techniques adhering meaning to data have led researchers to explore and combine together methodologies by exploiting their best features with the purpose of supporting manufacturing system's modelling and simulation applications. In the past two decades, the use of ontologies has proven to be highly effective for context modelling and knowledge management. Nevertheless, they are not meant for any kind of model simulations. The latter, instead, can be achieved by using a well-known workflow-oriented mathematical modelling language such as Petri Net (PN), which brings in modelling and analytical features suitable for creating a digital copy of an industrial system (also known as "digital twin"). The theoretical framework presented in this dissertation aims to exploit W3C standards, such as Semantic Web Rule Language (SWRL) and Web Ontology Language (OWL), to transform each piece of knowledge regarding a manufacturing system into Petri Net modelling primitives. In so doing, it supports the semantics-driven instantiation, analysis and simulation of what we call semantically-enriched PN-based manufacturing system digital twins. The approach proposed by this exploratory research is therefore based on the exploitation of the best features introduced by state-of-the-art developments in W3C standards for Linked Data, such as OWL and SWRL, together with a multipurpose graphical and mathematical modelling tool known as Petri Net. The former is used for gathering, classifying and properly storing industrial data and therefore enhances our PN-based digital copy of an industrial system with advanced reasoning features. This makes both the system modelling and analysis phases more effective and, above all, paves the way towards a completely new field, where semantically-enriched PN-based manufacturing system digital twins represent one of the drivers of the digital transformation already in place in all companies facing the industrial revolution. As a result, it has been possible to outline a list of indications that will help future efforts in the application of complex digital twin support oriented solutions, which in turn is based on semantically-enriched manufacturing information systems. Through the application cases, five key topics have been tackled, namely: (i) semantic enrichment of industrial data using the most recent ontological models in order to enhance its value and enable new uses; (ii) context-awareness, or context-adaptiveness, aiming to enable the system to capture and use information about the context of operations; (iii) reusability, which is a core concept through which we want to emphasize the importance of reusing existing assets in some form within the industrial modelling process, such as industrial process knowledge, process data, system modelling primitives, and the like; (iv) the ultimate goal of semantic Interoperability, which can be accomplished by adding data about the metadata, linking each data element to a controlled, shared vocabulary; finally, (v) the impact on modelling and simulation applications, which shows how we could automate the translation process of industrial knowledge into a digital manufacturing system and empower it with quantitative and qualitative analytical technics

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    Design and Management of Manufacturing Systems

    Get PDF
    Although the design and management of manufacturing systems have been explored in the literature for many years now, they still remain topical problems in the current scientific research. The changing market trends, globalization, the constant pressure to reduce production costs, and technical and technological progress make it necessary to search for new manufacturing methods and ways of organizing them, and to modify manufacturing system design paradigms. This book presents current research in different areas connected with the design and management of manufacturing systems and covers such subject areas as: methods supporting the design of manufacturing systems, methods of improving maintenance processes in companies, the design and improvement of manufacturing processes, the control of production processes in modern manufacturing systems production methods and techniques used in modern manufacturing systems and environmental aspects of production and their impact on the design and management of manufacturing systems. The wide range of research findings reported in this book confirms that the design of manufacturing systems is a complex problem and that the achievement of goals set for modern manufacturing systems requires interdisciplinary knowledge and the simultaneous design of the product, process and system, as well as the knowledge of modern manufacturing and organizational methods and techniques

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    In the last decades significant changes in the manufacturing environment have been noticed: moving from a local economy towards a global economy, with markets asking for products with high quality at lower costs, highly customised and with short life cycle. In this environment, the manufacturing enterprises, to avoid the risk to lose competitiveness, search to answer more closely to the customer demands, by improving their flexibility and agility, while maintaining their productivity and quality. Actually, the dynamic response to emergence is becoming a key issue, due to the weak response of the traditional manufacturing control systems to unexpected disturbances, mainly because of the rigidity of their control architectures. In these circumstances, the challenge is to develop manufacturing control systems with autonomy and intelligence capabilities, fast adaptation to the environment changes, more robustness against the occurrence of disturbances, and easier integration of manufacturing resources and legacy systems. Several architectures using emergent concepts and technologies have been proposed, in particular those based in the holonic manufacturing paradigm. Holonic manufacturing is a paradigm based in the ideas of the philosopher Arthur Koestler, who proposed the word holon to describe a basic unit of organisation in biological and social systems. A holon, as Koestler devised the term, is an identifiable part of a (manufacturing) system that has a unique identity, yet is made up of sub-ordinate parts and in turn is part of a larger whole. The introduction of the holonic manufacturing paradigm allows a new approach to the manufacturing problem, bringing the advantages of modularity, decentralisation, autonomy, scalability, and re-use of software components. This dissertation intends to develop an agile and adaptive manufacturing control architecture to face the current requirements imposed to the manufacturing enterprises. The architecture proposed in this dissertation addresses the need for the fast reaction to disturbances at the shop floor level, increasing the agility and flexibility of the enterprise, when it works in volatile environments, characterised by the frequent occurrence of unexpected disturbances. The proposed architecture, designated by ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing systems), is based in the holonic manufacturing paradigm, build upon autonomous and cooperative holons, allowing the development of manufacturing control applications that present all the features of decentralised and holonic systems. ADACOR holonic architecture introduces an adaptive control that balances dynamically between a more centralised structure and a more decentralised one, allowing to combine the global production optimisation with agile reaction to unexpected disturbances. Nas últimas décadas têm-se assistido a mudanças significativas no ambiente de fabrico: evoluindo de uma economia local para um economia global, com os mercados a procurar produtos com elevada qualidade a baixos preços, altamente customizados e com um ciclo de vida curto. Neste ambiente, as empresas de manufactura, para evitar o risco de perda de competitividade, procuram responder às solicitações dos clientes, melhorando a sua flexibilidade e agilidade, mantendo os mesmos índices de produtividade e qualidade. Na verdade, a resposta dinâmica à emergência está a tornar-se num assunto chave, devido `a fraca resposta a perturbações que os sistemas de controlo de fabrico tradicionais apresentam, principalmente devido à rigidez das suas arquitecturas de controlo. Nestas circunstâncias, é fundamental o desenvolvimento de sistemas de controlo de fabrico com capacidades de autonomia e inteligência, rápida adaptação às mudanças, maior robustez à ocorrência de perturbações e fácil integração de recursos físicos e sistemas legados. Diversas arquitecturas usando conceitos e tecnologias emergentes têm sido propostas, em particular algumas baseadas no paradigma da produção holónica. O paradigma da produção holónica é inspirado nas ideias de Arthur Koestler, que propôs a palavra holon para descrever uma unidade básica de organização de sistemas biológicos e sociais. Um holon, de acordo com a definição de Koestler, é uma parte identificável do sistema com identidade única, composta por sub-partes e fazendo simultaneamente parte do todo. A introdução do paradigma da produção holónica permite uma nova abordagem aos sistemas de controlo de fabrico, trazendo vantagens de modularidade, descentralização, autonomia, escalabilidade e reutilização de componentes. Esta dissertação pretende desenvolver uma arquitectura de controlo ágil e adaptativa que suporte os requisitos actuais impostos `as empresas de manufactura. A arquitectura proposta visa a necessidade de uma reacção rápida a perturbações, ao nível da planta fabril, melhorando a flexibilidade e agilidade da empresa quando esta opera em ambientes voláteis, caracterizados pela ocorrência frequente de perturbações inesperadas. A arquitectura proposta, designada por ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing systems), é baseada no paradigma da produção holónica e construída sobre holons autónomos e cooperativos, permitindo o desenvolvimento de aplicações de controlo de fabrico que apresentem todas as características dos sistemas descentralizados e holónicos. A arquitectura holónica ADACOR introduz um controlo adaptativo que balança dinamicamente entre uma estrutura de controlo mais centralizada e uma mais descentralizada, permitindo combinar a optimização da produção com a ágil reacção a perturbações

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism

    Structural model checking

    Get PDF
    The introduction of symbolic approaches, based on Binary Decision Diagrams (BDD), to Model Checking has led to significant improvements in Formal Verification, by allowing the analysis of very large systems, such as complex circuit designs. These were previously beyond the reach of traditional, explicit methods, due to the state space explosion phenomenon. However, after the initial success, the BDD technology has peaked, due to a similar problem, the BDD explosion.;We present a new approach to symbolic Model Checking that is based on exploiting the system structure. This technique is characterized by several unique features, including an encoding of states with Multiway Decision Diagrams (MDD) and of transitions with boolean Kronecker matrices. This approach naturally captures the property of event locality, inherently present in the class of globally asynchronous/locally synchronous systems.;The most important contribution of our work is the saturation algorithm for state space construction. Using saturation, the peak size of the MDD (luring the exploration is drastically reduced, often to sizes equal or comparable to the final MDD size, which makes it optimal in these terms. Subsequently, saturation can achieve similar reductions in runtimes. When compared to the leading state-of-the art tools based on traditional symbolic approaches, saturation is up to 100,000 times faster and uses up to 1,000 times less memory. This enables our approach to study much larger systems than ever considered. Following the success in state space exploration, we extend the applicability of the saturation algorithm to CTL Model Checking, and also to efficient generation of shortest length counterexamples for safety properties, with similar results.;This approach to automatic verification is implemented in the tool SMART. We test the new model checker on a real life, industrial size application: the NASA Runway Safety Monitor (RSM). The analysis exposes a number of potential problems with the decision procedure designed to signal all hazardous situations during takeoff and landing procedures on runways. Attempts to verify RSM with other model checkers (NuSMV, SPIN) fail due to excessive memory consumption, showing that our structural method is superior to existing symbolic approaches

    Proceedings, MSVSCC 2012

    Get PDF
    Proceedings of the 6th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2012 at VMASC in Suffolk, Virginia

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI
    corecore