92 research outputs found

    Emerging physical unclonable functions with nanotechnology

    Get PDF
    Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs

    Configurations of memristor-based APUF for improved performance

    Get PDF
    The memristor-based arbiter PUF (APUF) has great potential to be used for hardware security purposes. Its advantage is in its challenge-dependent delays, which cannot be modeled by machine learning algorithms. In this paper, further improvement is proposed, which are circuit configurations to the memristor-based APUF. Two configuration aspects were introduced namely varying the number of memristor per transistor, and the number of challenge and response bits. The purpose of the configurations is to introduce additional variation to the PUF, thereby improve PUF performance in terms of uniqueness, uniformity, and bit-aliasing; as well as resistance against support vector machine (SVM). Monte Carlo simulations were carried out on 180 nm and 130 nm, where both CMOS technologies have produced uniqueness, uniformity, and bit-aliasing values close to the ideal 50%; as well as SVM prediction accuracies no higher than 52.3%, therefore indicating excellent PUF performance

    Model Building and Security Analysis of PUF-Based Authentication

    Get PDF
    In the context of hardware systems, authentication refers to the process of confirming the identity and authenticity of chip, board and system components such as RFID tags, smart cards and remote sensors. The ability of physical unclonable functions (PUF) to provide bitstrings unique to each component can be leveraged as an authentication mechanism to detect tamper, impersonation and substitution of such components. However, authentication requires a strong PUF, i.e., one capable of producing a large, unique set of bits per device, and, unlike secret key generation for encryption, has additional challenges that relate to machine learning attacks, protocol attacks and constraints on device resources. We describe the requirements for PUF-based authentication, and present a PUF primitive and protocol designed for authentication in resource constrained devices. Our experimental results are derived from a 28 nm Xilinx FPGA. In the authentication scenario, strong PUFs are required since the adversary could collect a subset of challenges and response pairsto build a model and predict the responses for unseen challenges. Therefore, strong PUFs need to provide exponentially large challenge space and be resilient to model building attacks. We investigate the security properties of a Hardware-embedded Delay PUF called HELP which leverages within-die variations in path delays within a hardware-implemented macro (functional unit) as the entropy source. Several features of the HELP processing engine significantly improve its resistance to model-building attacks. We also investigate a novel technique that significantly improves the statistically quality of the generated bitstring for HELP. Stability across environmental variations such as temperature and voltage, is critically important for Physically Unclonable Functions (PUFs). Nearly all existing PUF systems to date need a mechanism to deal with “bit flips” when exact regeneration of the bitstring is required, e.g., for cryptographic applications. Error correction (ECC) and error avoidance schemes have been proposed but both of these require helper data to be stored for the regeneration process. Unfortunately, helper data adds time and area overhead to the PUF system and provides opportunities for adversaries to reverse engineer the secret bitstring. We propose a non-volatile memory-based (NVM) PUF that is able to avoid bit flips without requiring any type of helper data. We describe the technique in the context of emerging nano-devices, in particular, resistive random access memory (Memristor) cells, but the methodology is applicable to any type of NVM including Flash

    An overview of memristive cryptography

    Full text link
    Smaller, smarter and faster edge devices in the Internet of things era demands secure data analysis and transmission under resource constraints of hardware architecture. Lightweight cryptography on edge hardware is an emerging topic that is essential to ensure data security in near-sensor computing systems such as mobiles, drones, smart cameras, and wearables. In this article, the current state of memristive cryptography is placed in the context of lightweight hardware cryptography. The paper provides a brief overview of the traditional hardware lightweight cryptography and cryptanalysis approaches. The contrast for memristive cryptography with respect to traditional approaches is evident through this article, and need to develop a more concrete approach to developing memristive cryptanalysis to test memristive cryptographic approaches is highlighted.Comment: European Physical Journal: Special Topics, Special Issue on "Memristor-based systems: Nonlinearity, dynamics and applicatio

    RRAM Based Random Bit Generation for Hardware Security Applications

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Resistive random access memories (RRAMs) have arisen as a competitive candidate for non-volatile memories due to their scalability, simple structure, fast switching speed and compatibility with conventional back-end processes. The stochastic switching mechanism and intrinsic variability of RRAMs still poses challenges that must be overcome prior to their massive memory commercialization. However, these very same features open a wide range of potential applications for these devices in hardware security. In this context, this work proposes the generation of a random bit by means of simultaneous write operation of two parallel cells so that only one of them unpredictably switches its state. Electrical simulations confirm the strong stochastic behavior and stability of the proposed primitive. Exploiting this fact, a Physical Unclonable Function (PUF) like primitive is implemented based on modified 1 transistor - 1 resistor (1T1R) array structure.Peer ReviewedPostprint (published version

    Emerging physical unclonable functions with nanotechnology

    Get PDF
    Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs
    • …
    corecore