1,449 research outputs found

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    Digital image forensics via meta-learning and few-shot learning

    Get PDF
    Digital images are a substantial portion of the information conveyed by social media, the Internet, and television in our daily life. In recent years, digital images have become not only one of the public information carriers, but also a crucial piece of evidence. The widespread availability of low-cost, user-friendly, and potent image editing software and mobile phone applications facilitates altering images without professional expertise. Consequently, safeguarding the originality and integrity of digital images has become a difficulty. Forgers commonly use digital image manipulation to transmit misleading information. Digital image forensics investigates the irregular patterns that might result from image alteration. It is crucial to information security. Over the past several years, machine learning techniques have been effectively used to identify image forgeries. Convolutional Neural Networks(CNN) are a frequent machine learning approach. A standard CNN model could distinguish between original and manipulated images. In this dissertation, two CNN models are introduced to recognize seam carving and Gaussian filtering. Training a conventional CNN model for a new similar image forgery detection task, one must start from scratch. Additionally, many types of tampered image data are challenging to acquire or simulate. Meta-learning is an alternative learning paradigm in which a machine learning model gets experience across numerous related tasks and uses this expertise to improve its future learning performance. Few-shot learning is a method for acquiring knowledge from few data. It can classify images with as few as one or two examples per class. Inspired by meta-learning and few-shot learning, this dissertation proposed a prototypical networks model capable of resolving a collection of related image forgery detection problems. Unlike traditional CNN models, the proposed prototypical networks model does not need to be trained from scratch for a new task. Additionally, it drastically decreases the quantity of training images

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    On the Effectiveness of Image Manipulation Detection in the Age of Social Media

    Full text link
    Image manipulation detection algorithms designed to identify local anomalies often rely on the manipulated regions being ``sufficiently'' different from the rest of the non-tampered regions in the image. However, such anomalies might not be easily identifiable in high-quality manipulations, and their use is often based on the assumption that certain image phenomena are associated with the use of specific editing tools. This makes the task of manipulation detection hard in and of itself, with state-of-the-art detectors only being able to detect a limited number of manipulation types. More importantly, in cases where the anomaly assumption does not hold, the detection of false positives in otherwise non-manipulated images becomes a serious problem. To understand the current state of manipulation detection, we present an in-depth analysis of deep learning-based and learning-free methods, assessing their performance on different benchmark datasets containing tampered and non-tampered samples. We provide a comprehensive study of their suitability for detecting different manipulations as well as their robustness when presented with non-tampered data. Furthermore, we propose a novel deep learning-based pre-processing technique that accentuates the anomalies present in manipulated regions to make them more identifiable by a variety of manipulation detection methods. To this end, we introduce an anomaly enhancement loss that, when used with a residual architecture, improves the performance of different detection algorithms with a minimal introduction of false positives on the non-manipulated data. Lastly, we introduce an open-source manipulation detection toolkit comprising a number of standard detection algorithms

    ECG Biometric Authentication: A Comparative Analysis

    Get PDF
    Robust authentication and identification methods become an indispensable urgent task to protect the integrity of the devices and the sensitive data. Passwords have provided access control and authentication, but have shown their inherent vulnerabilities. The speed and convenience factor are what makes biometrics the ideal authentication solution as they could have a low probability of circumvention. To overcome the limitations of the traditional biometric systems, electrocardiogram (ECG) has received the most attention from the biometrics community due to the highly individualized nature of the ECG signals and the fact that they are ubiquitous and difficult to counterfeit. However, one of the main challenges in ECG-based biometric development is the lack of large ECG databases. In this paper, we contribute to creating a new large gallery off-the-person ECG datasets that can provide new opportunities for the ECG biometric research community. We explore the impact of filtering type, segmentation, feature extraction, and health status on ECG biometric by using the evaluation metrics. Our results have shown that our ECG biometric authentication outperforms existing methods lacking the ability to efficiently extract features, filtering, segmentation, and matching. This is evident by obtaining 100% accuracy for PTB, MIT-BHI, CEBSDB, CYBHI, ECG-ID, and in-house ECG-BG database in spite of noisy, unhealthy ECG signals while performing five-fold cross-validation. In addition, an average of 2.11% EER among 1,694 subjects is obtained
    corecore