462 research outputs found

    A Novel Measurement Processing Approach to the Parallel Expectation Propagation Unscented Kalman Filter

    Get PDF
    Advances in sensor systems have resulted in the availability of high resolution sensors, capable of generating massive amounts of data. For complex systems to run online, the primary focus is on computationally efficient filters for the estimation of latent states related to the data. In this paper a novel method for efficient state estimation with the unscented Kalman Filter is proposed. The focus is on applications consisting of a massive amount of data. From a modelling perspective, this amounts to a measurement vector with dimensionality significantly greater than the dimensionality of the state vector. The efficiency of the filter is derived from a parallel filter structure which is enabled by the expectation propagation algorithm. A novel parallel measurement processing expectation propagation unscented Kalman filter is developed. The primary advantage of the novel algorithm is in the ability to achieve computational improvements with negligible loses in filter accuracy. An example of robot localization with a high resolution laser rangefinder sensor is presented. A 47.53% decrease in computational time was exhibited for a scenario with a processing platform consisting of 4 processors, with a negligible loss in accuracy

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Negative-free approximation of probability density function for nonlinear projection filter

    Full text link
    Several approaches have been developed to estimate probability density functions (pdfs). The pdf has two important properties: the integration of pdf over whole sampling space is equal to 1 and the value of pdf in the sampling space is greater than or equal to zero. The first constraint can be easily achieved by the normalisation. On the other hand, it is hard to impose the non-negativeness in the sampling space. In a pdf estimation, some areas in the sampling space might have negative pdf values. It produces unreasonable moment values such as negative probability or variance. A transformation to guarantee the negative-free pdf over a chosen sampling space is presented and it is applied to the nonlinear projection filter. The filter approximates the pdf to solve nonlinear estimation problems. For simplicity, one-dimensional nonlinear system is used as an example to show the derivations and it can be readily generalised for higher dimensional systems. The efficiency of the proposed method is demonstrated by numerical simulations. The simulations also show that, for the same level of approximation error in the filter, the required number of basis functions with the transformation is a lot smaller than the ones without transformation. This would largely benefit the computational cost reduction

    Optimal experimental design for parameter identification and model selection

    Get PDF
    Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2014René Schenkendor
    • …
    corecore