15,520 research outputs found

    A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis

    Get PDF
    Recent studies on AD/MCI diagnosis have shown that the tasks of identifying brain disease and predicting clinical scores are highly related to each other. Furthermore, it has been shown that feature selection with a manifold learning or a sparse model can handle the problems of high feature dimensionality and small sample size. However, the tasks of clinical score regression and clinical label classification were often conducted separately in the previous studies. Regarding the feature selection, to our best knowledge, most of the previous work considered a loss function defined as an element-wise difference between the target values and the predicted ones. In this paper, we consider the problems of joint regression and classification for AD/MCI diagnosis and propose a novel matrix-similarity based loss function that uses high-level information inherent in the target response matrix and imposes the information to be preserved in the predicted response matrix. The newly devised loss function is combined with a group lasso method for joint feature selection across tasks, i.e., predictions of clinical scores and a class label. In order to validate the effectiveness of the proposed method, we conducted experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and showed that the newly devised loss function helped enhance the performances of both clinical score prediction and disease status identification, outperforming the state-of-the-art methods

    A novel relational regularization feature selection method for joint regression and classification in AD diagnosis

    Get PDF
    In this paper, we focus on joint regression and classification for Alzheimer’s disease diagnosis and propose a new feature selection method by embedding the relational information inherent in the observations into a sparse multi-task learning framework. Specifically, the relational information includes three kinds of relationships (such as feature-feature relation, response-response relation, and sample-sample relation), for preserving three kinds of the similarity, such as for the features, the response variables, and the samples, respectively. To conduct feature selection, we first formulate the objective function by imposing these three relational characteristics along with an ℓ2,1-norm regularization term, and further propose a computationally efficient algorithm to optimize the proposed objective function. With the reduced data, we train two support vector regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and also a support vector classification model to determine the clinical label. We conducted extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to validate the effectiveness of the proposed method. Our experimental results showed the efficacy of the proposed method in enhancing the performances of both clinical score prediction and disease status identification, compared to the state-of-the-art methods

    Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis

    Get PDF
    Fusing information from different imaging modalities is crucial for more accurate identification of the brain state because imaging data of different modalities can provide complementary perspectives on the complex nature of brain disorders. However, most existing fusion methods often extract features independently from each modality, and then simply concatenate them into a long vector for classification, without appropriate consideration of the correlation among modalities. In this paper, we propose a novel method to transform the original features from different modalities to a common space, where the transformed features become comparable and easy to find their relation, by canonical correlation analysis. We then perform the sparse multi-task learning for discriminative feature selection by using the canonical features as regressors and penalizing a loss function with a canonical regularizer. In our experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we use Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images to jointly predict clinical scores of Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE) and also identify multi-class disease status for Alzheimer’s disease diagnosis. The experimental results showed that the proposed canonical feature selection method helped enhance the performance of both clinical score prediction and disease status identification, outperforming the state-of-the-art methods

    Identifying Multimodal Intermediate Phenotypes between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

    Get PDF
    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation
    • …
    corecore