353 research outputs found

    A novel low-cost smart leaf wetness sensor

    Get PDF
    Peer ReviewedPostprint (published version

    Measurement of Water Vapor Condensation on Apple Surfaces during Controlled Atmosphere Storage

    Get PDF
    Apples are stored at temperatures close to 0 °C and high relative humidity (up to 95%) under controlled atmosphere conditions. Under these conditions, the cyclic operation of the refrigeration machine and the associated temperature fluctuations can lead to localized undershoots of the dew point on fruit surfaces. The primary question for the present study was to prove that such condensation processes can be measured under practical conditions during apple storage. Using the example of a measuring point in the upper apple layer of a large bin in the supply air area, this evidence was provided. Using two independent measuring methods, a wetness sensor attached to the apple surface and determination of climatic conditions near the fruit, the phases of condensation, namely active condensation and evaporation, were measured over three weeks as a function of the operating time of the cooling system components (refrigeration machine, fans, defrosting regime). The system for measurement and continuous data acquisition in the case of an airtight CA-storage room is presented and the influence of the operation of the cooling system components in relation to condensation phenomena was evaluated. Depending on the set point specifications for ventilation and defrost control, condensed water was present on the apple surface between 33.4% and 100% of the duration of the varying cooling/re-warming cycles

    IOT Based Smart Agriculture Monitoring System

    Get PDF
    Agriculture is the primary occupation in our country for ages. But now due to migration of people from rural to urban there is hindrance in agriculture. So to overcome this problem we go for smart agriculture techniques using IoT. This project includes various features like GPS based remote controlled monitoring, moisture & temperature sensing, intruders scaring, security, leaf wetness and proper irrigation facilities. It makes use of wireless sensor networks for noting the soil properties and environmental factors continuously. Various sensor nodes are deployed at different locations in the farm. Controlling these parameters are through any remote device or internet services and the operations are performed by interfacing sensors, Wi-Fi, camera with microcontroller. This concept is created as a product and given to the farmer?s welfare

    Internet of underground things in precision agriculture: Architecture and technology aspects

    Get PDF
    The projected increases in World population and need for food have recently motivated adoption of information technology solutions in crop fields within precision agriculture approaches. Internet Of Underground Things (IOUT), which consists of sensors and communication devices, partly or completely buried underground for real-time soil sensing and monitoring, emerge from this need. This new paradigm facilitates seamless integration of underground sensors, machinery, and irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. In this paper, state-of-the-art communication architectures are reviewed, and underlying sensing technology and communication mechanisms for IOUT are presented. Moreover, recent advances in the theory and applications of wireless underground communication are also reported. Finally, major challenges in IOUT design and implementation are identified

    SAgric-IoT: an IoT-based platform and deep learning for greenhouse monitoring

    Get PDF
    The Internet of Things (IoT) and convolutional neural networks (CNN) integration is a growing topic of interest for researchers as a technology that will contribute to transforming agriculture. IoT will enable farmers to decide and act based on data collected from sensor nodes regarding field conditions and not purely based on experience, thus minimizing the wastage of supplies (seeds, water, pesticide, and fumigants). On the other hand, CNN complements monitoring systems with tasks such as the early detection of crop diseases or predicting the number of consumable resources and supplies (water, fertilizers) needed to increase productivity. This paper proposes SAgric-IoT, a technology platform based on IoT and CNN for precision agriculture, to monitor environmental and physical variables and provide early disease detection while automatically controlling the irrigation and fertilization in greenhouses. The results show SAgric-IoT is a reliable IoT platform with a low packet loss level that considerably reduces energy consumption and has a disease identification detection accuracy and classification process of over 90%

    Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics

    Get PDF
    none7noHuman activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.openBuja I.; Sabella E.; Monteduro A.G.; Chiriaco M.S.; De Bellis L.; Luvisi A.; Maruccio G.Buja, I.; Sabella, E.; Monteduro, A. G.; Chiriaco, M. S.; De Bellis, L.; Luvisi, A.; Maruccio, G
    • …
    corecore