200 research outputs found

    Ant-Colony-Based Multiuser Detection for MC DS-CDMA Systems

    No full text
    In this contribution we present a novel ant colony optimization (ACO) based multi-user detector (MUD) designed for synchronous multi-carrier direct sequence code division multiple access (MC DSCDMA) systems. The operation of the ACO-based MUD is based on the behaviour of the ant colony in nature. The ACO-based MUD aims for achieving the same bit-error-rate (BER) performance as the optimum maximum likelihood (ML) MUD, without carrying out an exhaustive search of the entire MC DS-CDMA search space constituted by all possible combinations of the received multi-user vectors. We will demonstrate that the system is capable of supporting almost as many users as the number of chips in the spreading sequence, while searching only a small fraction of the entire ML search space. It will also be demonstrated that the number of floating point operations per second is a factor of 108 lower for the proposed ACO-based MUD than that of the ML MUD, when supporting K = 32 users in a MC DS-CDMA system employing 31-chip Gold codes as the T-domain spreading sequence

    Ant-colony-based multiuser detection for multifunctional-antenna-array-assisted MC DS-CDMA systems

    No full text
    A novel Ant Colony Optimization (ACO) based Multi-User Detector (MUD) is designed for the synchronous Multi-Functional Antenna Array (MFAA) assisted Multi-Carrier Direct-Sequence Code-Division Multiple-Access (MC DS-CDMA) uplink (UL), which supports both receiver diversity and receiver beamforming. The ACO-based MUD aims for achieving a bit-error-rate (BER) performance approaching that of the optimum maximum likelihood (ML) MUD, without carrying out an exhaustive search of the entire MC DS-CDMA search space constituted by all possible combinations of the received multi-user vectors. We will demonstrate that regardless of the number of the subcarriers or of the MFAA configuration, the system employing the proposed ACO based MUD is capable of supporting 32 users with the aid of 31-chip Gold codes used as the T-domain spreading sequence without any significant performance degradation compared to the single-user system. As a further benefit, the number of floating point operations per second (FLOPS) imposed by the proposed ACO-based MUD is a factor of 108 lower than that of the ML MUD. We will also show that at a given increase of the complexity, the MFAA will allow the ACO based MUD to achieve a higher SNR gain than the Single-Input Single-Output (SISO) MC DS-CDMA system. Index Terms—Ant Colony Optimization, Multi-User Detector, Multi-Functional Antenna Array, Multi-Carrier Direct-Sequence Code-Division Multiple-Access, Uplink, Near-Maximum Likelihood Detection

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Novel multiuser detection and multi-rate schemes for multi-carrier CDMA

    Get PDF
    A large variety of services is [sic] expected for wireless systems, in particular, high data rate services, such as wireless Internet access. Users with different data rates and quality of service (QoS) requirements must be accommodated. A suitable multiple access scheme is key to enabling wireless systems to support both the high data rate and the integrated multiple data rate transmissions with satisfactory performance and flexibility. A multi-carrier code division multiple access (MC-CDMA) scheme is a promising candidate for emerging broadband wireless systems. MC-CDMA is a hybrid of orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA). The most salient feature of MC-CDMA is that the rate of transmission is not limited by the wireless channel\u27s frequency-selective fading effects caused by multipath propagation. In MC-CDMA, each chip of the desired user\u27s spreading code, multiplied by the current data bit, is modulated onto a separate subcarrier. Therefore, each subcarrier has a narrow bandwidth and undergoes frequency-flat fading. Two important issues for an MC-CDMA wireless system, multiuser detection and multi-rate access, are discussed in this dissertation. Several advanced receiver structures capable of suppressing multiuser interference in an uplink MC-CDMA system, operating in a frequency-selective fading channel, are studied in this dissertation. One receiver is based on a so-called multishot structure, in which the interference introduced by the asynchronous reception of different users is successfully suppressed by a receiver based on the minimum mean-square error (MMSE) criterion with a built-in de-biasing feature. Like many other multiuser schemes, this receiver is very sensitive to a delay estimation error. A blind adaptive two-stage decorrelating receiver based on the bootstrap algorithm is developed to combat severe performance degradation due to a delay estimation error. It is observed that in the presence of a delay estimation error the blind adaptive bootstrap receiver is more near-far resistant than the MMSE receiver. Furthermore, a differential bootstrap receiver is proposed to extend the limited operating range of the two-stage bootstrap receiver which suffers from a phase ambiguity problem. Another receiver is based on a partial sampling (PS) demodulation structure, which further reduces the sensitivity to unknown user delays in an uplink scenario. Using this partial sampling structure, it is no longer necessary to synchronize the receiver with the desired user. Following the partial sampling demodulator, a minimum mean-square error combining (MMSEC) detector is applied. The partial sampling MMSEC (PS-MMSEC) receiver is shown to have strong interference suppression and timing acquisition capabilities. The complexity of this receiver can be reduced significantly, with negligible performance loss, by choosing a suitable partial sampling rate and using a structure called reduced complexity PS-MMSEC (RPS-MMSEC). The adaptive implementation of these receivers yields a superior rate of convergence and symbol error rate performance in comparison to a conventional MMSEC receiver with known timing. All the above receiver structures are for a single-rate MC-CDMA. Three novel multi-rate access schemes for multi-rate MC-CDMA, fixed spreading length (FSL), coded FSL (CFSL) and variable spreading length (VSL), have been developed. These multi-rate access schemes enable users to transmit information at different data rates in one MC-CDMA system. Hence, voice, data, image and video can be transmitted seamlessly through a wireless infrastructure. The bit error rate performance of these schemes is investigated for both low-rate and high-rate users

    Fixed-complexity quantum-assisted multi-user detection for CDMA and SDMA

    No full text
    In a system supporting numerous users the complexity of the optimal Maximum Likelihood Multi-User Detector (ML MUD) becomes excessive. Based on the superimposed constellations of K users, the ML MUD outputs the specific multilevel K-user symbol that minimizes the Euclidean distance with respect to the faded and noise-contaminated received multi-level symbol. Explicitly, the Euclidean distance is considered as the Cost Function (CF). In a system supporting K users employing M-ary modulation, the ML MUD uses MK CF evaluations (CFE) per time slot. In this contribution we propose an Early Stopping-aided Durr-Høyer algorithm-based Quantum-assisted MUD (ES-DHA QMUD) based on two techniques for achieving optimal ML detection at a low complexity. Our solution is also capable of flexibly adjusting the QMUD's performance and complexity trade-off, depending on the computing power available at the base station. We conclude by proposing a general design methodology for the ES-DHA QMUD in the context of both CDMA and SDMA systems

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    corecore