2,170 research outputs found

    Data Imputation through the Identification of Local Anomalies

    Get PDF
    We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose i) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and ii) a Maximum A Posteriori (MAP) estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous vs normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions; and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions

    Object detection for big data

    Get PDF
    "May 2014."Dissertation supervisor: Dr. Tony X. Han.Includes vita.We have observed significant advances in object detection over the past few decades and gladly seen the related research has began to contribute to the world: Vehicles could automatically stop before hitting any pedestrian; Face detectors have been integrated into smart phones and tablets; Video surveillance systems could locate the suspects and stop crimes. All these applications demonstrate the substantial research progress on object detection. However learning a robust object detector is still quite challenging due to the fact that object detection is a very unbalanced big data problem. In this dissertation, we aim at improving the object detector's performance from different aspects. For object detection, the state-of-the-art performance is achieved through supervised learning. The performances of object detectors of this kind are mainly determined by two factors: features and underlying classification algorithms. We have done thorough research on both of these factors. Our contribution involves model adaption, local learning, contextual boosting, template learning and feature development. Since the object detection is an unbalanced problem, in which positive examples are hard to be collected, we propose to adapt a general object detector for a specific scenario with a few positive examples; To handle the large intra-class variation problem lying in object detection task, we propose a local adaptation method to learn a set of efficient and effective detectors for a single object category; To extract the effective context from the huge amount of negative data in object detection, we introduce a novel contextual descriptor to iteratively improve the detector; To detect object with a depth sensor, we design an effective depth descriptor; To distinguish the object categories with the similar appearance, we propose a local feature embedding and template selection algorithm, which has been successfully incorporated into a real-world fine-grained object recognition application. All the proposed algorithms and featuIncludes bibliographical references (pages 117-130)

    An integrated background model for video surveillance based on primal sketch and 3D scene geometry

    Get PDF
    This paper presents a novel integrated background model for video surveillance. Our model uses a primal sketch representation for image appearance and 3D scene geometry to capture the ground plane and major surfaces in the scene. The primal sketch model divides the background image into three types of regions — flat, sketchable and textured. The three types of regions are modeled respectively by mixture of Gaussians, image primitives and LBP histograms. We calibrate the camera and recover important planes such as ground, horizontal surfaces, walls, stairs in the 3D scene, and use geometric information to predict the sizes and locations of foreground blobs to further reduce false alarms. Compared with the state-of-theart background modeling methods, our approach is more effective, especially for indoor scenes where shadows, highlights and reflections of moving objects and camera exposure adjusting usually cause problems. Experiment results demonstrate that our approach improves the performance of background/foreground separation at pixel level, and the integrated video surveillance system at the object and trajectory level. 1

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A modified model for the Lobula Giant Movement Detector and its FPGA implementation

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector
    corecore