120 research outputs found

    PCA-Based Advanced Local Octa-Directional Pattern (ALODP-PCA): A Texture Feature Descriptor for Image Retrieval

    Get PDF
    This paper presents a novel feature descriptor termed principal component analysis (PCA)-based Advanced Local Octa-Directional Pattern (ALODP-PCA) for content-based image retrieval. The conventional approaches compare each pixel of an image with certain neighboring pixels providing discrete image information. The descriptor proposed in this work utilizes the local intensity of pixels in all eight directions of its neighborhood. The local octa-directional pattern results in two patterns, i.e., magnitude and directional, and each is quantized into a 40-bin histogram. A joint histogram is created by concatenating directional and magnitude histograms. To measure similarities between images, the Manhattan distance is used. Moreover, to maintain the computational cost, PCA is applied, which reduces the dimensionality. The proposed methodology is tested on a subset of a Multi-PIE face dataset. The dataset contains almost 800,000 images of over 300 people. These images carries different poses and have a wide range of facial expressions. Results were compared with state-of-the-art local patterns, namely, the local tri-directional pattern (LTriDP), local tetra directional pattern (LTetDP), and local ternary pattern (LTP). The results of the proposed model supersede the work of previously defined work in terms of precision, accuracy, and recall

    A Structural Based Feature Extraction for Detecting the Relation of Hidden Substructures in Coral Reef Images

    Get PDF
    In this paper, we present an efficient approach to extract local structural color texture features for classifying coral reef images. Two local texture descriptors are derived from this approach. The first one, based on Median Robust Extended Local Binary Pattern (MRELBP), is called Color MRELBP (CMRELBP). CMRELBP is very accurate and can capture the structural information from color texture images. To reduce the dimensionality of the feature vector, the second descriptor, co-occurrence CMRELBP (CCMRELBP) is introduced. It is constructed by applying the Integrative Co-occurrence Matrix (ICM) on the Color MRELBP images. This way we can detect and extract the relative relations between structural texture patterns. Moreover, we propose a multiscale LBP based approach with these two schemes to capture microstructure and macrostructure texture information. The experimental results on coral reef (EILAT, EILAT2, RSMAS, and MLC) and four well-known texture datasets (OUTEX, KTH-TIPS, CURET, and UIUCTEX) show that the proposed scheme is quite effective in designing an accurate, robust to noise, rotation and illumination invariant texture classification system. Moreover, it makes an admissible tradeoff between accuracy and number of features

    An Enhanced Texture-Based Feature Extraction Approach for Classification of Biomedical Images of CT-Scan of Lungs

    Get PDF
    Content Based Image Retrieval (CBIR) techniques based on texture have gained a lot of popularity in recent times. In the proposed work, a feature vector is obtained by concatenation of features extracted from local mesh peak valley edge pattern (LMePVEP) technique; a dynamic threshold based local mesh ternary pattern technique and texture of the image in five different directions. The concatenated feature vector is then used to classify images of two datasets viz. Emphysema dataset and Early Lung Cancer Action Program (ELCAP) lung database. The proposed framework has improved the accuracy by 12.56%, 9.71% and 7.01% in average for data set 1 and 9.37%, 8.99% and 7.63% in average for dataset 2 over three popular algorithms used for image retrieval

    Visual Analysis Algorithms for Embedded Systems

    Get PDF
    Visual search systems are very popular applications, but on-line versions in 3G wireless environments suffer from network constraint like unstable or limited bandwidth that entail latency in query delivery, significantly degenerating the user’s experience. An alternative is to exploit the ability of the newest mobile devices to perform heterogeneous activities, like not only creating but also processing images. Visual feature extraction and compression can be performed on on-board Graphical Processing Units (GPUs), making smartphones capable of detecting a generic object (matching) in an exact way or of performing a classification activity. The latest trends in visual search have resulted in dedicated efforts in MPEG standardization, namely the MPEG CDVS (Compact Descriptor for Visual Search) standard. CDVS is an ISO/IEC standard used to extract a compressed descriptor. As regards to classification, in recent years neural networks have acquired an impressive importance and have been applied to several domains. This thesis focuses on the use of Deep Neural networks to classify images by means of Deep learning. Implementing visual search algorithms and deep learning-based classification on embedded environments is not a mere code-porting activity. Recent embedded devices are equipped with a powerful but limited number of resources, like development boards such as GPGPUs. GPU architectures fit particularly well, because they allow to execute more operations in parallel, following the SIMD (Single Instruction Multiple Data) paradigm. Nonetheless, it is necessary to make good design choices for the best use of available hardware and memory. For visual search, following the MPEG CDVS standard, the contribution of this thesis is an efficient feature computation phase, a parallel CDVS detector, completely implemented on embedded devices supporting the OpenCL framework. Algorithmic choices and implementation details to target the intrinsic characteristics of the selected embedded platforms are presented and discussed. Experimental results on several GPUs show that the GPU-based solution is up to 7× faster than the CPU-based one. This speed-up opens new visual search scenarios exploiting entire real-time on-board computations with no data transfer. As regards to the use of Deep convolutional neural networks for off-line image classification, their computational and memory requirements are huge, and this is an issue on embedded devices. Most of the complexity derives from the convolutional layers and in particular from the matrix multiplications they entail. The contribution of this thesis is a self-contained implementation to image classification providing common layers used in neural networks. The approach relies on a heterogeneous CPU-GPU scheme for performing convolutions in the transform domain. Experimental results show that the heterogeneous scheme described in this thesis boasts a 50× speedup over the CPU-only reference and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%

    Enhanced feature selection algorithm for pneumonia detection

    Get PDF
    Pneumonia is a type of lung disease that can be detected using X-ray images. The analysis of chest X-ray images is an active research area in medical image analysis and computer-aided radiology. This research aims to improve the accuracy and efficiency of radiologists' work by providing a technique for identifying and categorizing diseases. More attention should be given to applying machine learning approaches to develop a robust chest X-ray image classification method. The typical method for detecting Pneumonia is through chest X-ray images, but analyzing these images can be complex and requires the expertise of a radiographer. This paper demonstrates the feasibility of detecting the disease using chest X-ray images as datasets and a Support Vector Machine combined with a Naive Bayesian classifier, with PCA and GA as feature selection methods. The selected features are essential for training many classifiers. The proposed system achieved an accuracy of 92.26%, using 91% of the principal component. The study's result suggests that using PCA and GA for feature selection in chest X-ray image classification can achieve a good accuracy of 97.44%. Further research is needed to explore the use of other data mining models and care components to improve the accuracy and effectiveness of the system

    Automated facial characterization and image retrieval by convolutional neural networks

    Get PDF
    IntroductionDeveloping efficient methods to infer relations among different faces consisting of numerous expressions or on the same face at different times (e.g., disease progression) is an open issue in imaging related research. In this study, we present a novel method for facial feature extraction, characterization, and identification based on classical computer vision coupled with deep learning and, more specifically, convolutional neural networks.MethodsWe describe the hybrid face characterization system named FRetrAIval (FRAI), which is a hybrid of the GoogleNet and the AlexNet Neural Network (NN) models. Images analyzed by the FRAI network are preprocessed by computer vision techniques such as the oriented gradient-based algorithm that can extract only the face region from any kind of picture. The Aligned Face dataset (AFD) was used to train and test the FRAI solution for extracting image features. The Labeled Faces in the Wild (LFW) holdout dataset has been used for external validation.Results and discussionOverall, in comparison to previous techniques, our methodology has shown much better results on k-Nearest Neighbors (KNN) by yielding the maximum precision, recall, F1, and F2 score values (92.00, 92.66, 92.33, and 92.52%, respectively) for AFD and (95.00% for each variable) for LFW dataset, which were used as training and testing datasets. The FRAI model may be potentially used in healthcare and criminology as well as many other applications where it is important to quickly identify face features such as fingerprint for a specific identification target

    Extraction robuste de primitives géométriques 3D dans un nuage de points et alignement basé sur les primitives

    Get PDF
    Dans ce projet, nous étudions les problèmes de rétro-ingénierie et de contrôle de la qualité qui jouent un rôle important dans la fabrication industrielle. La rétro-ingénierie tente de reconstruire un modèle 3D à partir de nuages de points, qui s’apparente au problème de la reconstruction de la surface 3D. Le contrôle de la qualité est un processus dans lequel la qualité de tous les facteurs impliqués dans la production est abordée. En fait, les systèmes ci-dessus nécessitent beaucoup d’intervention de la part d’un utilisateur expérimenté, résultat souhaité est encore loin soit une automatisation complète du processus. Par conséquent, de nombreux défis doivent encore être abordés pour atteindre ce résultat hautement souhaitable en production automatisée. La première question abordée dans la thèse consiste à extraire les primitives géométriques 3D à partir de nuages de points. Un cadre complet pour extraire plusieurs types de primitives à partir de données 3D est proposé. En particulier, une nouvelle méthode de validation est proposée pour évaluer la qualité des primitives extraites. À la fin, toutes les primitives présentes dans le nuage de points sont extraites avec les points de données associés et leurs paramètres descriptifs. Ces résultats pourraient être utilisés dans diverses applications telles que la reconstruction de scènes on d’édifices, la géométrie constructive et etc. La seconde question traiée dans ce travail porte sur l’alignement de deux ensembles de données 3D à l’aide de primitives géométriques, qui sont considérées comme un nouveau descripteur robuste. L’idée d’utiliser les primitives pour l’alignement arrive à surmonter plusieurs défis rencontrés par les méthodes d’alignement existantes. Ce problème d’alignement est une étape essentielle dans la modélisation 3D, la mise en registre, la récupération de modèles. Enfin, nous proposons également une méthode automatique pour extraire les discontinutés à partir de données 3D d’objets manufacturés. En intégrant ces discontinutés au problème d’alignement, il est possible d’établir automatiquement les correspondances entre primitives en utilisant l’appariement de graphes relationnels avec attributs. Nous avons expérimenté tous les algorithmes proposés sur différents jeux de données synthétiques et réelles. Ces algorithmes ont non seulement réussi à accomplir leur tâches avec succès mais se sont aussi avérés supérieus aux méthodes proposées dans la literature. Les résultats présentés dans le thèse pourraient s’avérér utilises à plusieurs applications.In this research project, we address reverse engineering and quality control problems that play significant roles in industrial manufacturing. Reverse engineering attempts to rebuild a 3D model from the scanned data captured from a object, which is the problem similar to 3D surface reconstruction. Quality control is a process in which the quality of all factors involved in production is monitored and revised. In fact, the above systems currently require significant intervention from experienced users, and are thus still far from being fully automated. Therefore, many challenges still need to be addressed to achieve the desired performance for automated production. The first proposition of this thesis is to extract 3D geometric primitives from point clouds for reverse engineering and surface reconstruction. A complete framework to extract multiple types of primitives from 3D data is proposed. In particular, a novel validation method is also proposed to assess the quality of the extracted primitives. At the end, all primitives present in the point cloud are extracted with their associated data points and descriptive parameters. These results could be used in various applications such as scene and building reconstruction, constructive solid geometry, etc. The second proposition of the thesis is to align two 3D datasets using the extracted geometric primitives, which is introduced as a novel and robust descriptor. The idea of using primitives for alignment is addressed several challenges faced by existing registration methods. This alignment problem is an essential step in 3D modeling, registration and model retrieval. Finally, an automatic method to extract sharp features from 3D data of man-made objects is also proposed. By integrating the extracted sharp features into the alignment framework, it is possible implement automatic assignment of primitive correspondences using attribute relational graph matching. Each primitive is considered as a node of the graph and an attribute relational graph is created to provide a structural and relational description between primitives. We have experimented all the proposed algorithms on different synthetic and real scanned datasets. Our algorithms not only are successful in completing their tasks with good results but also outperform other methods. We believe that the contribution of them could be useful in many applications
    • …
    corecore