307 research outputs found

    Using Media Independent Handover to Support PMIPv6 Inter-domain Mobility Based Vehicular Networks

    Get PDF
    Proxy Mobile IPv6 (PMIPv6) was proposed by the Internet Engineering Task Force (IETF) as a new network-based mobility protocol which does not require the involvement of MN’s in any form of mobility management. MN can handover relatively faster in PMIPv6 than in host-based mobility protocols (e.g. Mobile IPv6 (MIPv6)) because it actively uses link-layer attachment information which reduces the movement detection time, and eliminates duplicate address detection procedures. However, the current PMIPv6 cannot provide continuous mobility support for MN when roaming between different PMIPv6 domains; we introduce a novel inter-domain PMIPv6 scheme to support seamless handover for vehicle in motion to support continuous and seamless connection while roaming in the new PMIPv6 domain. In this paper we analytically evaluate our proposed scheme to support inter-domain mobility for vehicle roaming between two PMIPv6 domains by using Media Independent Handover (MIH) and Fully Qualified Domain Name (FQDN) to support the handover in addition to a continuous connection

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Mobility Support in User-Centric Networks

    Get PDF
    In this paper, an overview of challenges and requirements for mobility management in user-centric networks is given, and a new distributed and dynamic per-application mobility management solution is presented. After a brief summary of generic mobility management concepts, existing approaches from the distributed and peer-to-peer mobility management literature are introduced, along with their applicability or shortcomings in the UCN environment. Possible approaches to deal with the decentralized and highly dynamic nature of UCNs are also provided with a discussion and an introduction to potential future work

    Distributed All-IP Mobility Management Architecture Supported by the NDN Overlay

    Get PDF
    Two of the most promising candidate solutions for realizing the next-generation all-IP mobile networks are Mobile IPv6 (MIPv6), which is the host-based and global mobility supporting protocol, and Proxy MIPv6 (PMIPv6), which is the network-based and localized mobility supporting protocol. However, the unprecedented growth of mobile Internet traffic has resulted in the development of distributed mobility management (DMM) architecture by the Internet engineering task force DMM working group. The extension of the basic MIPv6 and PMIPv6 to support their distributed and scalable deployment in the future is one of the major goals of the DMM working group. We propose an all-IP-based mobility management architecture that leverages the concept of Named Data Networking (NDN), which is a distributed content management and addressing architecture. In the proposed solution, mobility support services are distributed among multiple anchor points at the edge of the network, thereby enabling a flat architecture that exploits name-based routing in NDN. Our approach overcomes some of the major limitations of centralized IP mobility management solutions, by extending existing routing protocol and mobility management architecture, to distribute the mobility management function of anchor points in the IP network and optimize the transmission path of mobile traffic

    An overview of internet engineering task force mobility management protocols: approaches and its challenges

    Get PDF
    In recent years, internet protocol mobility management has become one of the most popular research areas in networking. Mobility management protocols are in charge of preserving continuing communications as a user roam between different networks. All existing internet protocols (IP), like MIPv6, and PMIPv6, rely on a centralized mobility anchor to control mobile node traffic and signaling. The disadvantages of centralized mobility management (CMM) include ineffectiveness in handling massive volumes of traffic, poor scalability, wasteful use of network resources, and packet delay. When CMM is required to handle mobile media, which demands a huge amount of information and frequently needs quality of services (QoS) such as session continuance and reduced latency, these difficulties become apparent. It drives the need for distributed mobility management protocol (DMM) systems to manage the growing amount of mobile data, the overwhelming of this is video communication. DMM approaches could be regarded as an innovative and effective method to deal with mobility. An overview of the CMM protocol and its drawbacks are analyzed. This study examines the various DMM protocol techniques and their performance metrics are compared to highlight similarities and differences. The study reveals the network-based DMM protocol improves overall handoff time and packet loss

    Proposal and analysis of integrated PTN architecture in the mobile backhaul to improve the QoS of HetNets

    Get PDF
    Los rápidos avances de las tecnologías de dispositivos móviles han implicado que la red de acceso debe evolucionar y desarrollar nuevas estrategias para satisfacer las necesidades de los usuarios. La red heterogénea (HetNet) permite una estrategia de implementación flexible y ofrece soluciones económicamente viables para mejorar la escalabilidad de red y cobertura en interiores. Este tema emergente ha captado la atención de la comunidad científica y la industria debido a la importancia de estas redes para satisfacer la demanda de servicios de datos. Para proporcionar esta demanda, deben satisfacerse diferentes parámetros de calidad de servicio (QoS). En este trabajo, presentamos un estudio sobre los últimos avances y los temas de investigación sobre movilidad en conjunción con protocolos de conmutación de etiquetas multiprotocolo (MPLS) de paquetes basado en redes de transporte (PTN) para proporcionar QoS en redes heterogéneas inalámbricas. Se presentan diversos protocolos de gestión móvil y su interacción con la red de retorno móvil yred básica por paquetes. Una nueva arquitectura denominada Proxy integrado Mobile MPLS-TP (MIP-TP) se expone también a reducir los costos y mejorar la señalización de la QoS en HetNets con altas tasas de movilidad.The rapid progress made in mobile device technologies has implied that the access network must evolute and develop new strategies to satisfy the requirements of the users. Heterogeneous network (HetNet) allows for a flexible deployment strategy and offers economically viable solutions to improve network scalability and indoor coverage. This emerging topic has caught the attention of the research community and the industry because of the importance of these networks to satisfy the demand of data services. To provide this demand, different parameters of quality of service (QoS) must be satisfied. In this paper, we present a study on recent advances and open research issues on Mobility Protocols in conjunction with Multi-Protocol Label Switching (MPLS)-based packet transport networks (PTN) to provide QoS in wireless heterogeneous networks. Various mobile management protocols and their interaction with the mobile backhaul and packet core network are briefly introduced. A new architecture called Integrated Proxy Mobile MPLS-TP (IPM-TP) is also outlined to reduce the signalling cost and improve the QoS in HetNets with high rates of mobility.Unión Europea. Fondos Europeos de Desarrollo Regional (FEDER). Proyecto SOE4/P3/E804peerReviewe
    corecore