838 research outputs found

    Approximate maximum likelihood estimation of two closely spaced sources

    Get PDF
    The performance of the majority of high resolution algorithms designed for either spectral analysis or Direction-of-Arrival (DoA) estimation drastically degrade when the amplitude sources are highly correlated or when the number of available snapshots is very small and possibly less than the number of sources. Under such circumstances, only Maximum Likelihood (ML) or ML-based techniques can still be effective. The main drawback of such optimal solutions lies in their high computational load. In this paper we propose a computationally efficient approximate ML estimator, in the case of two closely spaced signals, that can be used even in the single snapshot case. Our approach relies on Taylor series expansion of the projection onto the signal subspace and can be implemented through 1-D Fourier transforms. Its effectiveness is illustrated in complicated scenarios with very low sample support and possibly correlated sources, where it is shown to outperform conventional estimators

    Augmented Lagrange Based on Modified Covariance Matching Criterion Method for DOA Estimation in Compressed Sensing

    Get PDF
    A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is presented, in which DOA estimation is considered as the joint sparse recovery from multiple measurement vectors (MMV). The proposed method is obtained by minimizing the modified-based covariance matching criterion, which is acquired by adding penalties according to the regularization method. This minimization problem is shown to be a semidefinite program (SDP) and transformed into a constrained quadratic programming problem for reducing computational complexity which can be solved by the augmented Lagrange method. The proposed method can significantly improve the performance especially in the scenarios with low signal to noise ratio (SNR), small number of snapshots, and closely spaced correlated sources. In addition, the Cramér-Rao bound (CRB) of the proposed method is developed and the performance guarantee is given according to a version of the restricted isometry property (RIP). The effectiveness and satisfactory performance of the proposed method are illustrated by simulation results

    Sound Source Localization in a Multipath Environment Using Convolutional Neural Networks

    Full text link
    The propagation of sound in a shallow water environment is characterized by boundary reflections from the sea surface and sea floor. These reflections result in multiple (indirect) sound propagation paths, which can degrade the performance of passive sound source localization methods. This paper proposes the use of convolutional neural networks (CNNs) for the localization of sources of broadband acoustic radiated noise (such as motor vessels) in shallow water multipath environments. It is shown that CNNs operating on cepstrogram and generalized cross-correlogram inputs are able to more reliably estimate the instantaneous range and bearing of transiting motor vessels when the source localization performance of conventional passive ranging methods is degraded. The ensuing improvement in source localization performance is demonstrated using real data collected during an at-sea experiment.Comment: 5 pages, 5 figures, Final draft of paper submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 15-20 April 2018 in Calgary, Alberta, Canada. arXiv admin note: text overlap with arXiv:1612.0350

    Multiple Sparse Measurement Gradient Reconstruction Algorithm for DOA Estimation in Compressed Sensing

    Get PDF
    A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is proposed, in which the DOA estimation problem is cast as the joint sparse reconstruction from multiple measurement vectors (MMV). The proposed method is derived through transforming quadratically constrained linear programming (QCLP) into unconstrained convex optimization which overcomes the drawback that l1-norm is nondifferentiable when sparse sources are reconstructed by minimizing l1-norm. The convergence rate and estimation performance of the proposed method can be significantly improved, since the steepest descent step and Barzilai-Borwein step are alternately used as the search step in the unconstrained convex optimization. The proposed method can obtain satisfactory performance especially in these scenarios with low signal to noise ratio (SNR), small number of snapshots, or coherent sources. Simulation results show the superior performance of the proposed method as compared with existing methods

    Scaling transform based information geometry method for DOA estimation

    Get PDF
    By exploiting the relationship between probability density and the differential geometry structure of received data and geodesic distance, the recently proposed information geometry (IG) method can provide higher accuracy and resolution ability for direction of arrival (DOA) estimation than many existing methods. However, its performance is not robust even for high signal to noise ratio (SNR). To have a deep understanding of its unstable performance, a theoretical analysis of the IG method is presented by deriving the relationship between the cost function and the number of array elements, powers and DOAs of source signals, and noise power. Then, to make better use of the nonlinear and super resolution property of the cost function, a Scaling TRansform based INformation Geometry (STRING) method is proposed, which simply scales the array received data or its covariance matrix by a real number. However, the expression for the optimum value of the scalar is complicated and related to the unknown signal DOAs and powers. Hence, a decision criterion and a simple search based procedure are developed, guaranteeing a robust performance. As demonstrated by computer simulations, the proposed STRING method has the best and robust angle resolution performance compared with many existing high resolution methods and even outperforms the classic Cramer-Rao bound (CRB), although at the cost of a bias in the estimation results

    Sparse Modeling of Grouped Line Spectra

    Get PDF
    This licentiate thesis focuses on clustered parametric models for estimation of line spectra, when the spectral content of a signal source is assumed to exhibit some form of grouping. Different from previous parametric approaches, which generally require explicit knowledge of the model orders, this thesis exploits sparse modeling, where the orders are implicitly chosen. For line spectra, the non-linear parametric model is approximated by a linear system, containing an overcomplete basis of candidate frequencies, called a dictionary, and a large set of linear response variables that selects and weights the components in the dictionary. Frequency estimates are obtained by solving a convex optimization program, where the sum of squared residuals is minimized. To discourage overfitting and to infer certain structure in the solution, different convex penalty functions are introduced into the optimization. The cost trade-off between fit and penalty is set by some user parameters, as to approximate the true number of spectral lines in the signal, which implies that the response variable will be sparse, i.e., have few non-zero elements. Thus, instead of explicit model orders, the orders are implicitly set by this trade-off. For grouped variables, the dictionary is customized, and appropriate convex penalties selected, so that the solution becomes group sparse, i.e., has few groups with non-zero variables. In an array of sensors, the specific time-delays and attenuations will depend on the source and sensor positions. By modeling this, one may estimate the location of a source. In this thesis, a novel joint location and grouped frequency estimator is proposed, which exploits sparse modeling for both spectral and spatial estimates, showing robustness against sources with overlapping frequency content. For audio signals, this thesis uses two different features for clustering. Pitch is a perceptual property of sound that may be described by the harmonic model, i.e., by a group of spectral lines at integer multiples of a fundamental frequency, which we estimate by exploiting a novel adaptive total variation penalty. The other feature, chroma, is a concept in musical theory, collecting pitches at powers of 2 from each other into groups. Using a chroma dictionary, together with appropriate group sparse penalties, we propose an automatic transcription of the chroma content of a signal
    • …
    corecore