1,230 research outputs found

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Iterative Near-Maximum-Likelihood Detection in Rank-Deficient Downlink SDMA Systems

    No full text
    Abstractβ€”In this paper, a precoded and iteratively detected downlink multiuser system is proposed, which is capable of operating in rankdeficient scenarios, when the number of transmitters exceeds the number of receivers. The literature of uplink space division multiple access (SDMA) systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the downlink. Hence, we propose a novel precoded downlink SDMA (DL-SDMA) multiuser communication system, which invokes a low-complexity nearmaximum-likelihood sphere decoder and is particularly suitable for the aforementioned rank-deficient scenario. Powerful iterative decoding is carried out by exchanging extrinsic information between the precoder’s decoder and the outer channel decoder. Furthermore, we demonstrate with the aid of extrinsic information transfer charts that our proposed precoded DL-SDMA system has a better convergence behavior than its nonprecoded DL-SDMA counterpart. Quantitatively, the proposed system having a normalized system load of Ls = 1.333, i.e., 1.333 times higher effective throughput facilitated by having 1.333 times more DL-SDMA transmitters than receivers, exhibits a β€œturbo cliff” at an Eb/N0 of 5 dB and hence results in an infinitesimally low bit error rate (BER). By contrast, at Eb/N0 = 5 dB, the equivalent system dispensing with precoding exhibits a BER in excess of 10%. Index Termsβ€”Iterative decoding, maximum likelihood detection, space division multiple access (SDMA) downlink, sphere decoding

    On multi-user EXIT chart analysis aided turbo-detected MBER beamforming designs

    No full text
    Abstractβ€”This paper studies the mutual information transfer characteristics of a novel iterative soft interference cancellation (SIC) aided beamforming receiver communicating over both additive white Gaussian noise (AWGN) and multipath slow fading channels. Based on the extrinsic information transfer (EXIT) chart technique, we investigate the convergence behavior of an iterative minimum bit error rate (MBER) multiuser detection (MUD) scheme as a function of both the system parameters and channel conditions in comparison to the SIC aided minimum mean square error (SIC-MMSE) MUD. Our simulation results show that the EXIT chart analysis is sufficiently accurate for the MBER MUD. Quantitatively, a two-antenna system was capable of supporting up to K=6 users at Eb/N0=3dB, even when their angular separation was relatively low, potentially below 20?. Index Termsβ€”Minimum bit error rate, beamforming, multiuser detection, soft interference cancellation, iterative processing, EXIT chart

    Hybrid Iterative Multiuser Detection for Channel Coded Space Division Multiple Access OFDM Systems

    No full text
    Space division multiple access (SDMA) aided orthogonal frequency division multiplexing (OFDM) systems assisted by efficient multiuser detection (MUD) techniques have recently attracted intensive research interests. The maximum likelihood detection (MLD) arrangement was found to attain the best performance, although this was achieved at the cost of a computational complexity, which increases exponentially both with the number of users and with the number of bits per symbol transmitted by higher order modulation schemes. By contrast, the minimum mean-square error (MMSE) SDMA-MUD exhibits a lower complexity at the cost of a performance loss. Forward error correction (FEC) schemes such as, for example, turbo trellis coded modulation (TTCM), may be efficiently combined with SDMA-OFDM systems for the sake of improving the achievable performance. Genetic algorithm (GA) based multiuser detection techniques have been shown to provide a good performance in MUD-aided code division multiple access (CDMA) systems. In this contribution, a GA-aided MMSE MUD is proposed for employment in a TTCM assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its optimum MLD-aided counterpart at a significantly lower complexity, especially at high user loads. Moreover, when the proposed biased Q-function based mutation (BQM) assisted iterative GA (IGA) MUD is employed, the GA-aided system’s performance can be further improved, for example, by reducing the bit error ratio (BER) measured at 3 dB by about five orders of magnitude in comparison to the TTCM assisted MMSE-SDMA-OFDM benchmarker system, while still maintaining modest complexity

    New factor graph based multiuser detector for spectrally efficient CPM

    Get PDF
    This paper presents a new iterative multiuser detection algorithm for asynchronous spectrally-efficient M-ary continuous-phase modulation in additive white Gaussian noise. This detection algorithm is closely related to another algorithm that was recently proposed by the same authors, but it follows from applying the sum-product algorithm to a different factor graph of the same multiuser detection problem. This, in turn, results in a different way to approximate the marginal bit a-posteriori probabilities that are used to perform minimum bit error rate multiuser detection. The girth of the factor graph considered in this contribution is twice as large, which is known to be potentially beneficial for the accuracy of the a-posteriori probabilities. The size of the largest factor graph variable alphabets also multiplies with M, rendering the straightforward application of the sum-product algorithm more complex. Through approximating a suitable set of sum-product messages by a Gaussian distribution, this complexity is significantly reduced. For a set of system parameters yielding high spectral efficiency, the resulting algorithm significantly outperforms the previously proposed solution

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore