92,258 research outputs found

    CUBOS: An Internal Cluster Validity Index for Categorical Data

    Get PDF
    Internal cluster validity index is a powerful tool for evaluating clustering performance. The study on internal cluster validity indices for categorical data has been a challenging task due to the difficulty in measuring distance between categorical attribute values. While some efforts have been made, they ignore the relationship between different categorical attribute values and the detailed distribution information between data objects. To solve these problems, we propose a novel index called Categorical data cluster Utility Based On Silhouette (CUBOS). Specifically, we first make clear the superiority of the paradigm of Silhouette index in exploring the details of clustering results. Then, we raise the Improved Distance metric for Categorical data (IDC) inspired by Category Distance to measure distance between categorical data exactly. Finally, the paradigm of Silhouette index and IDC are combined to construct the CUBOS, which can overcome the aforementioned shortcomings and produce more accurate evaluation results than other baselines, as shown by the experimental results on several UCI datasets

    Understanding the Evaluation Abilities of External Cluster Validity Indices to Internal Ones

    Get PDF
    Evaluating internal Cluster Validity Index (CVI) is a critical task in clustering research. Existing studies mainly employ the number of clusters (NC-based method) or external CVIs (external CVIs-based method) to evaluate internal CVIs, which are not always reasonable in all scenarios. Additionally, there is no guideline of choosing appropriate methods to evaluate internal CVIs in different cases. In this paper, we focus on the evaluation abilities of external CVIs to internal CVIs, and propose a novel approach, named external CVI\u27s evaluation Ability MEasurement approach through Ranking consistency (CAMER), to measure the evaluation abilities of external CVIs quantitatively, for assisting in selecting appropriate external CVIs to evaluate internal CVIs. Specifically, we formulate the evaluation ability measurement problem as a ranking consistency task, by measuring the consistency between the evaluation results of external CVIs to internal CVIs and the ground truth performance of internal CVIs. Then, the superiority of CAMER is validated through a real-world case. Moreover, the evaluation abilities of seven popular external CVIs to internal CVIs in six different scenarios are explored by CAMER. Finally, these explored evaluation abilities are validated on four real-world datasets, demonstrating the effectiveness of CAMER

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Cluster validity in clustering methods

    Get PDF
    corecore