1,739 research outputs found

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Data mining based learning algorithms for semi-supervised object identification and tracking

    Get PDF
    Sensor exploitation (SE) is the crucial step in surveillance applications such as airport security and search and rescue operations. It allows localization and identification of movement in urban settings and can significantly boost knowledge gathering, interpretation and action. Data mining techniques offer the promise of precise and accurate knowledge acquisition techniques in high-dimensional data domains (and diminishing the “curse of dimensionality” prevalent in such datasets), coupled by algorithmic design in feature extraction, discriminative ranking, feature fusion and supervised learning (classification). Consequently, data mining techniques and algorithms can be used to refine and process captured data and to detect, recognize, classify, and track objects with predictable high degrees of specificity and sensitivity. Automatic object detection and tracking algorithms face several obstacles, such as large and incomplete datasets, ill-defined regions of interest (ROIs), variable scalability, lack of compactness, angular regions, partial occlusions, environmental variables, and unknown potential object classes, which work against their ability to achieve accurate real-time results. Methods must produce fast and accurate results by streamlining image processing, data compression and reduction, feature extraction, classification, and tracking algorithms. Data mining techniques can sufficiently address these challenges by implementing efficient and accurate dimensionality reduction with feature extraction to refine incomplete (ill-partitioning) data-space and addressing challenges related to object classification, intra-class variability, and inter-class dependencies. A series of methods have been developed to combat many of the challenges for the purpose of creating a sensor exploitation and tracking framework for real time image sensor inputs. The framework has been broken down into a series of sub-routines, which work in both series and parallel to accomplish tasks such as image pre-processing, data reduction, segmentation, object detection, tracking, and classification. These methods can be implemented either independently or together to form a synergistic solution to object detection and tracking. The main contributions to the SE field include novel feature extraction methods for highly discriminative object detection, classification, and tracking. Also, a new supervised classification scheme is presented for detecting objects in urban environments. This scheme incorporates both novel features and non-maximal suppression to reduce false alarms, which can be abundant in cluttered environments such as cities. Lastly, a performance evaluation of Graphical Processing Unit (GPU) implementations of the subtask algorithms is presented, which provides insight into speed-up gains throughout the SE framework to improve design for real time applications. The overall framework provides a comprehensive SE system, which can be tailored for integration into a layered sensing scheme to provide the war fighter with automated assistance and support. As more sensor technology and integration continues to advance, this SE framework can provide faster and more accurate decision support for both intelligence and civilian applications

    Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering

    Get PDF
    technical reportThe restoration of images is an important and widely studied problem in computer vision and image processing. Various image filtering strategies have been effective, but invariably make strong assumptions about the properties of the signal and/or degradation. Therefore, these methods typically lack the generality to be easily applied to new applications or diverse image collections. This paper describes a novel unsupervised, informationtheoretic, adaptive filter (UINTA) that improves the predictability of pixel intensities from their neighborhoods by decreasing the joint entropy between them. Thus UINTA automatically discovers the statistical properties of the signal and can thereby restore a wide spectrum of images and applications. This paper describes the formulation required to minimize the joint entropy measure, presents several important practical considerations in estimating image-region statistics, and then presents results on both real and synthetic data

    Methodology for automatic classification of atypical lymphoid cells from peripheral blood cell images

    Get PDF
    Morphological analysis is the starting point for the diagnostic approach of more than 80% of the hematological diseases. However, the morphological differentiation among different types of abnormal lymphoid cells in peripheral blood is a difficult task, which requires high experience and skill. Objective values do not exist to define cytological variables, which sometimes results in doubts on the correct cell classification in the daily hospital routine. Automated systems exist which are able to get an automatic preclassification of the normal blood cells, but fail in the automatic recognition of the abnormal lymphoid cells. The general objective of this thesis is to develop a complete methodology to automatically recognize images of normal and reactive lymphocytes, and several types of neoplastic lymphoid cells circulating in peripheral blood in some mature B-cell neoplasms using digital image processing methods. This objective follows two directions: (1) with engineering and mathematical background, transversal methodologies and software tools are developed; and (2) with a view towards the clinical laboratory diagnosis, a system prototype is built and validated, whose input is a set of pathological cell images from individual patients, and whose output is the automatic classification in one of the groups of the different pathologies included in the system. This thesis is the evolution of various works, starting with a discrimination between normal lymphocytes and two types of neoplastic lymphoid cells, and ending with the design of a system for the automatic recognition of normal lymphocytes and five types of neoplastic lymphoid cells. All this work involves the development of a robust segmentation methodology using color clustering, which is able to separate three regions of interest: cell, nucleus and peripheral zone around the cell. A complete lymphoid cell description is developed by extracting features related to size, shape, texture and color. To reduce the complexity of the process, a feature selection is performed using information theory. Then, several classifiers are implemented to automatically recognize different types of lymphoid cells. The best classification results are achieved using support vector machines with radial basis function kernel. The methodology developed, which combines medical, engineering and mathematical backgrounds, is the first step to design a practical hematological diagnosis support tool in the near future.Los análisis morfológicos son el punto de partida para la orientación diagnóstica en más del 80% de las enfermedades hematológicas. Sin embargo, la clasificación morfológica entre diferentes tipos de células linfoides anormales en la sangre es una tarea difícil que requiere gran experiencia y habilidad. No existen valores objetivos para definir variables citológicas, lo que en ocasiones genera dudas en la correcta clasificación de las células en la práctica diaria en un laboratorio clínico. Existen sistemas automáticos que realizan una preclasificación automática de las células sanguíneas, pero no son capaces de diferenciar automáticamente las células linfoides anormales. El objetivo general de esta tesis es el desarrollo de una metodología completa para el reconocimiento automático de imágenes de linfocitos normales y reactivos, y de varios tipos de células linfoides neoplásicas circulantes en sangre periférica en algunos tipos de neoplasias linfoides B maduras, usando métodos de procesamiento digital de imágenes. Este objetivo sigue dos direcciones: (1) con una orientación propia de la ingeniería y la matemática de soporte, se desarrollan las metodologías transversales y las herramientas de software para su implementación; y (2) con un enfoque orientado al diagnóstico desde el laboratorio clínico, se construye y se valida un prototipo de un sistema cuya entrada es un conjunto de imágenes de células patológicas de pacientes analizados de forma individual, obtenidas mediante microscopía y cámara digital, y cuya salida es la clasificación automática en uno de los grupos de las distintas patologías incluidas en el sistema. Esta tesis es el resultado de la evolución de varios trabajos, comenzando con una discriminación entre linfocitos normales y dos tipos de células linfoides neoplásicas, y terminando con el diseño de un sistema para el reconocimiento automático de linfocitos normales y reactivos, y cinco tipos de células linfoides neoplásicas. Todo este trabajo involucra el desarrollo de una metodología de segmentación robusta usando agrupamiento por color, la cual es capaz de separar tres regiones de interés: la célula, el núcleo y la zona externa alrededor de la célula. Se desarrolla una descripción completa de la célula linfoide mediante la extracción de descriptores relacionados con el tamaño, la forma, la textura y el color. Para reducir la complejidad del proceso, se realiza una selección de descriptores usando teoría de la información. Posteriormente, se implementan varios clasificadores para reconocer automáticamente diferentes tipos de células linfoides. Los mejores resultados de clasificación se logran utilizando máquinas de soporte vectorial con núcleo de base radial. La metodología desarrollada, que combina conocimientos médicos, matemáticos y de ingeniería, es el primer paso para el diseño de una herramienta práctica de soporte al diagnóstico hematológico en un futuro cercano

    Computer Vision for Timber Harvesting

    Get PDF
    corecore