993 research outputs found

    Biogeography-based learning particle swarm optimization

    Get PDF

    Evolutionary framework with reinforcement learning-based mutation adaptation

    Get PDF
    Although several multi-operator and multi-method approaches for solving optimization problems have been proposed, their performances are not consistent for a wide range of optimization problems. Also, the task of ensuring the appropriate selection of algorithms and operators may be inefficient since their designs are undertaken mainly through trial and error. This research proposes an improved optimization framework that uses the benefits of multiple algorithms, namely, a multi-operator differential evolution algorithm and a co-variance matrix adaptation evolution strategy. In the former, reinforcement learning is used to automatically choose the best differential evolution operator. To judge the performance of the proposed framework, three benchmark sets of bound-constrained optimization problems (73 problems) with 10, 30 and 50 dimensions are solved. Further, the proposed algorithm has been tested by solving optimization problems with 100 dimensions taken from CEC2014 and CEC2017 benchmark problems. A real-world application data set has also been solved. Several experiments are designed to analyze the effects of different components of the proposed framework, with the best variant compared with a number of state-of-the-art algorithms. The experimental results show that the proposed algorithm is able to outperform all the others considered.</p

    Enhanced Differential Evolution Based on Adaptive Mutation and Wrapper Local Search Strategies for Global Optimization Problems

    Get PDF
    AbstractDifferential evolution (DE) is a simple, powerful optimization algorithm, which has been widely used in many areas. However, the choices of the best mutation and search strategies are difficult for the specific issues. To alleviate these drawbacks and enhance the performance of DE, in this paper, the hybrid framework based on the adaptive mutation and Wrapper Local Search (WLS) schemes, is proposed to improve searching ability to efficiently guide the evolution of the population toward the global optimum. Furthermore, the effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA) that we previously published is applied to always produce feasible candidate solutions for solving the Flexible Job-shop Scheduling Problem (FJSP). Experiments were conducted on comprehensive set of complex benchmarks including the unimodal, multimodal and hybrid composition function, to validate performance of the proposed method and to compare with other state-of-the art DE variants such as jDE, JADE, MDE_pBX etc. Meanwhile, the hybrid DE model incorporating PSOMA is used to solve different representative instances based on practical data for multi-objective FJSP verifications. Simulation results indicate that the proposed method performs better for the majority of the single-objective scalable benchmark functions in terms of the solution accuracy and convergence rate. In addition, the wide range of Pareto-optimal solutions and more Gantt chart decision-makings can be provided for the multi-objective FJSP combinatorial optimizations

    Improving the JADE algorithm by clustering successful parameters

    Get PDF
    Differential evolution (DE) is one of the most powerful and popular evolutionary algorithms for real parameter global optimisation problems. However, the performance of DE greatly depends on the selection of control parameters, e.g., the population size, scaling factor and crossover rate. How to set these parameters is a challenging task because they are problem dependent. In order to tackle this problem, a JADE variant, denoted CJADE, is proposed in this paper. In the proposed algorithm, the successful parameters are clustered with the k-means clustering algorithm to reduce the impact of poor parameters. Simulation results show that CJADE is better than, or at least comparable with, several state-of-the-art DE algorithms
    • …
    corecore