19,482 research outputs found

    A Hybrid Multi-Criteria Analysis Model for Solving the Facility Location–Allocation Problem: a Case Study of Infectious Waste Disposal

    Full text link
    Choosing locations for infectious waste disposal (IWD) is one of the most significant issues in hazardous waste management due to the risk imposed on the environment and human life. This risk can be the result of an undesirable location of IWD facilities. In this study a hybrid multi-criteria analysis (Hybrid MCA) model for solving the facility location–allocation (FLA) problem for IWD was developed by combining two objectives: total cost minimization and weight maximization. Based on an actual case of forty-seven hospitals and three candidate municipalities in the northeastern region of Thailand, first, the Fuzzy AHP and Fuzzy TOPSIS techniques were integrated to determine the closeness of the coefficient weights of each candidate municipality. After that, these weights were converted to weighting factors and then these factors were taken into the objective function of the FLA model. The results showed that the Hybrid MCA model can help decision makers to locate disposal centers, hospitals and incinerator size simultaneously. Besides that the model can be extended by incorporating additional selection criteria/objectives. Therefore, it is believed that it can also be useful for addressing other complex problems

    A NEW INTEGRATED GREY MCDM MODEL: CASE OF WAREHOUSE LOCATION SELECTION

    Get PDF
    Warehouses link suppliers and customers throughout the entire supply chain. The location of the warehouse has a significant impact on the logistics process. Even though all other warehouse activities are successful, if the product dispatched from the warehouse fails to meet the customer needs in time, the company may face with the risk of losing customers. This affects the performance of the whole supply chain therefore the choice of warehouse location is an important decision problem. This problem is a multi-criteria decision-making (MCDM) problem since it involves many criteria and alternatives in the selection process. This study proposes an integrated grey MCDM model including grey preference selection index (GPSI) and grey proximity indexed value (GPIV) to determine the most appropriate warehouse location for a supermarket. This study aims to make three contributions to the literature. PSI and PIV methods combined with grey theory will be introduced for the first time in the literature. In addition, GPSI and GPIV methods will be combined and used to select the best warehouse location. In this study, the performances of five warehouse location alternatives were assessed with twelve criteria. Location 4 is found as the best alternative in GPIV. The GPIV results were compared with other grey MCDM methods, and it was found that GPIV method is reliable. It has been determined from the sensitivity analysis that the change in criteria weights causes a change in the ranking of the locations therefore GPIV method was found to be sensitive to the change in criteria weights

    A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making

    Get PDF
    In the realm of multi-criteria decision-making (MCDM) problems, the selection of a weighting method holds a critical role. Researchers from diverse fields have consistently employed MCDM techniques, utilizing both traditional and novel methods to enhance the discipline. Acknowledging the significance of staying abreast of such methodological developments, this study endeavors to contribute to the field through a comprehensive review of several novel weighting-based methods: CILOS, IDOCRIW, FUCOM, LBWA, SAPEVO-M, and MEREC. Each method is scrutinized in terms of its characteristics and steps while also drawing upon publications extracted from the Web of Science (WoS) and Scopus databases. Through bibliometric and content analyses, this study delves into the trend, research components (sources, authors, countries, and affiliations), application areas, fuzzy implementations, hybrid studies (use of other weighting and/or ranking methods), and application tools for these methods. The findings of this review offer an insightful portrayal of the applications of each novel weighting method, thereby contributing valuable knowledge for researchers and practitioners within the field of MCDM.WOS:0009972313000012-s2.0-85160203389Emerging Sources Citation IndexarticleUluslararası işbirliği ile yapılan - EVETHaziran2023YÖK - 2022-2

    The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development

    Get PDF
    The development of intermodal transportation (IT) systems is of vital importance for the sustainability of logistics activities. The existing research point at individual directions of action for system improvement and increase of IT participation in overall transportation, thus reducing negative impacts of logistics on sustainability. However, there is a lack of research defining complex scenarios that unite existing ideas and concepts of IT system development and improvement. Accordingly, this article deals with the definition and selection of the most appropriate IT development scenario for the region of Southeastern Europe. Six different potential scenarios that differ in the network configuration, the required level of logistics infrastructure development, the role of different IT terminal categories, the involvement of different transportation modes, and goods flows’ transformation degree, are defined. The scenarios are analyzed according to four stakeholder groups and twelve defined criteria. A novel hybrid multi-criteria decision-making model, based on fuzzy Delphi, fuzzy Factor Relationship (FARE), and fuzzy Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) methods, is developed for solving the problem. The definition and analysis of the problem, the way of establishing the scenarios, as well as the development of a novel hybrid model are the main contributions of this article. A significant contribution is also the consideration of the Dry Port (DP) concept for the first time in the context of river ports. The results indicate that the scenario referring to the development of the IT core network with the Danube DP terminals is potentially the most appropriate scenario for the Southeastern Europe IT system

    Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model

    Get PDF
    Globalization and decentralization of production generate the intensive growth of goods and transport flows, mostly performed by the maritime transport. Ports, as the main nodes in the global logistics networks, are becoming congested, space for their expansion limited, and traffic in their hinterland congested. As a solution to these and many other hinterland-transport-related problems stands out the development of dry port (DP) terminals. Selection of their location is one of the most important strategic decisions on which depends their competitiveness in the market and the functionality of the logistics network. Accordingly, the evaluation and selection of locations for the development of the DP in accordance with the requirements of various stakeholders is performed in this paper, as a prerequisite for the establishment of an ecological, economic, and socially sustainable logistics network in the observed area. To solve this problem, a new hybrid model of multi-criteria decision-making (MCDM) that combines Delphi, AHP (Analytical Hierarchy Process), and CODAS (Combinative Distance-based Assessment) methods in a grey environment is developed. The main contributions of this paper are the defined model, the problem-solving approach based on finding a compromise solution, simultaneous consideration of the environmental, economic, and social sustainability of the DP concept and its implementation in the regional international markets. The applicability of the approach and the defined MCDM model is demonstrated by solving a real-life case study of ranking the potential DP locations in the Western Balkans region. Based on the obtained results, it is concluded that in the current market conditions, it would be most realistic to open three DP terminals, in Zagreb, Ljubljana, and Belgrad

    Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposal

    Get PDF
    Purpose: Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.Peer Reviewe
    corecore