264 research outputs found

    Research and development for the data, trigger and control card in preparation for Hi-Lumi lhc

    Get PDF
    When the Large Hadron Collider (LHC) increases its luminosity by an order of magnitude in the coming decade, the experiments that sit upon it must also be upgraded to continue to their physics performance in the increasingly demanding environment. To achieve this, the Compact Muon Solenoid (CMS) experiment will make use of tracking information in the Level-1 trigger for the first time, meaning that track reconstruction must be achieved in less than 4 μs in an all-FPGA architecture. MUonE is an experiment aiming to make an accurate measurement of the the hadronic contribution to the anomalous magnetic moment of the muon. It will achieve this by making use of similar apparatus to that designed for CMS and benefit from the research and development efforts there. This thesis presents both development and testing work for the readout chain from tracker module to back-end processing card, as well as the results and analysis of a beam test used to validate this chain for both CMS and the MUonE experiment.Open Acces

    Design Techniques of Parallel Accelerator Architectures for Real-Time Processing of Learning Algorithms

    Get PDF
    H παρούσα διδακτορική διατριβή έχει ως βασικό αντικείμενο μελέτης τα Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks - CNNs) για εφαρμογές υπολογιστικής όρασης (computer vision) και συγκεκριμένα εστιάζει στην εκτέλεση της διαδικασίας της εξαγωγής συμπερασμάτων των CNNs (CNN inference) σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές της υπολογιστικής των παρυφών (edge computing). Ο σκοπός της διατριβής είναι να αντιμετωπίσει τις τρέχουσες προκλήσεις σχετικά με τη βελτιστοποίηση των CNNs προκειμένου αυτά να υλοποιηθούν σε edge computing πλατφόρμες, καθώς και τις προκλήσεις στο πεδίο των τεχνικών σχεδίασης αρχιτεκτονικών επιταχυντών για CNNs. Προς αυτή την κατεύθυνση, η παρούσα διατριβή επικεντρώνεται σε διαφορετικές εφαρμογές βαθιάς μάθησης (deep learning), συμπεριλαμβανομένης της επεξεργασίας εικόνων σε δορυφόρους και της πρόβλεψης ηλιακής ακτινοβολίας από εικόνες. Στις παραπάνω εφαρμογές, η διατριβή συμβάλλει σε τέσσερα διακριτά προβλήματα στα πεδία της βελτιστοποίησης CNNs και της σχεδίασης επιταχυντών CNNs. Αρχικά, η διατριβή συνεισφέρει στην υπάρχουσα βιβλιογραφία σχετικά με τεχνικές επεξεργασίας εικόνας, βασισμένες στα CNNs, για την εκτίμηση και πρόβλεψη ηλιακής ακτινοβολίας. Στα πλαίσια της διατριβής, προτείνεται μια μέθοδος επεξεργασίας εικόνας η οποία βασίζεται στον ακριβή εντοπισμό του Ήλιου σε εικόνες του ουρανού, χρησιμοποιώντας τις συντεταγμένες του Ήλιου και τις εξισώσεις του fisheye φακού της κάμερας λήψης εικόνων του ουρανού. Όταν η προτεινόμενη μέθοδος εφαρμόζεται σε φωτογραφίες του ουρανού πριν από την επεξεργασία τους από τα CNNs, τα αποτελέσματα από την εκτεταμένη μελέτη που διενεργεί η διατριβή, δείχνουν πως μπορεί να βελτιώσει την ακρίβεια των τιμών ακτινοβολίας που παράγουν τα CNNs σε όλες τις περιπτώσεις και με μικρή μόνο αύξηση στο πλήθος των υπολογισμών των CNNs. Στη συνέχεια, η διδακτορική διατριβή επικεντρώνεται στην κατάτμηση εικόνων βασισμένη στη βαθιά μάθηση, με στόχο τον εντοπισμό σύννεφων από δορυφορικές εικόνες σε εφαρμογές επεξεργασίας δεδομένων σε δορυφόρους. Πιο συγκεκριμένα, στα πλαίσια της διατριβής προτείνεται μια αρχιτεκτονική μοντέλου CNN περιορισμένων υπολογιστικών απαιτήσεων, βασισμένη στην αρχιτεκτονική U-Net, η οποία στοχεύει σε μια βελτιωμένη αναλογία ανάμεσα στο μέγεθος του μοντέλου και στις επιδόσεις του στη δυαδική κατάτμηση της εικόνας. Το προτεινόμενο μοντέλο εκμεταλλεύεται πλήθος τεχνικών CNNs προκειμένου να μειώσει το πλήθος των παραμέτρων και πράξεων που απαιτείται για την εκτέλεση του μοντέλου, αλλά ταυτόχρονα να πετυχαίνει ικανοποιητική ακρίβεια αποτελεσμάτων. Η διατριβή διενεργεί μια μελέτη ανάμεσα σε CNN μοντέλα της βιβλιογραφίας για εντοπισμό σύννεφων που έχουν αξιολογηθεί στα ίδια δεδομένα με το προτεινόμενο μοντέλο, και έτσι αναδεικνύει τα προτερήματά του. Επιπλέον, η διδακτορική διατριβή στοχεύει στην αποδοτική υλοποίηση του inference των CNNs επεξεργασίας εικόνας σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές edge computing. Για τον σκοπό αυτό, η διατριβή επιλέγει τα Field-Programmable Gate Arrays (FPGAs) για την επιτάχυνση των CNNs και συνεισφέρει τις λεπτομέρειες της μεθοδολογίας ανάπτυξης που υιοθετήθηκε και η οποία βασίζεται στο εργαλείο Xilinx Vitis AI. Πέρα από τη μελέτη των δυνατοτήτων του Vitis AI, όπως των προχωρημένων τεχνικών κβάντισης των μοντέλων, η διατριβή παρουσιάζει επιπλέον και μια προσέγγιση επιτάχυνσης για την επιτάχυνση των επιμέρους διεργασιών μιας ολοκληρωμένης εργασίας μηχανικής όρασης η οποία εκμεταλλεύεται τους ετερογενείς πόρους του FPGA. Τα αποτελέσματα χρόνων εκτέλεσης και διεκπεραιωτικότητας (throughput) των CNNs τόσο για τη δυαδική κατάτμηση εικόνων για εντοπισμό σύννεφων όσο και για την εκτίμηση ηλιακής ακτινοβολίας από εικόνες, στο FPGA, αναδεικνύουν τις δυνατότητες επεξεργασίας σε πραγματικό χρόνο του επιταχυντή. Τέλος, η διδακτορική διατριβή συνεισφέρει τη σχεδίαση ενός συστήματος διεπαφής, υψηλών επιδόσεων και με ανοχή στα σφάλματα, για την αμφίδρομη μεταφορά εικόνων ανάμεσα σε ενσωματωμένους επιταχυντές βαθιάς μάθησης, στα πλαίσια υπολογιστικών αρχιτεκτονικών για επεξεργασία δεδομένων σε δορυφόρους. Το σύστημα διεπαφής αναπτύχθηκε για την επικοινωνία ανάμεσα σε ένα FPGA και τον επιταχυντή Intel Movidius Myriad 2 και η εκτεταμένη διαδικασία επαλήθευσης του συστήματος, τόσο σε εμπορικά διαθέσιμες όσο και σε πρωτότυπες πλατφόρμες, έδειξε πως αυτό μπορεί να επιτύχει μέχρι και 2.4 Gbps αμφίδρομους ρυθμούς μετάδοσης δεδομένων εικόνων.The current doctoral thesis focuses on Convolutional Neural Networks (CNNs) for computer vision applications and particularly on the deployment of the inference process of CNNs to embedded accelerators suitable for edge computing. The objective of the thesis is to address several challenges regarding the optimization techniques of CNNs towards their edge deployment as well as challenges in the field of CNN accelerator architectures design techniques. In this direction, the thesis focuses on different deep learning applications, including on-board payload data processing as well as solar irradiance forecasting, and makes distinct contributions to four different challenges in the fields of CNN optimization and CNN accelerators design. First, the thesis contributes to the existing literature regarding image processing techniques and deep learning-based image regression for solar irradiance estimation and forecasting. It proposes an image processing method which is based on accurate sun localization in sky images and which utilizes the solar angles and the mapping functions of the lens of the sky imager camera. When the proposed method is applied to the sky images before these are processed by the image regression CNNs, the results from the extensive study that the thesis conducts, show that the method can improve the accuracy of the irradiance values that the CNNs produce in all cases by introducing only minimal computational overhead. Next, the thesis focuses on the task of deep learning-based semantic segmentation in order to enable cloud detection from satellite imagery in on-board payload data processing applications. In particular, the thesis proposes a lightweight CNN model architecture, based on the U-Net architecture, which aims at providing an improved trade-off between model size and binary semantic segmentation performance. The proposed model utilizes several CNN techniques in order to reduce the number of parameters and operations required for the inference but at the same time maintain satisfying performance. The thesis conducts a study among CNN models for cloud detection, which are evaluated on the same test dataset as the proposed model, and thus showcases the advantages of the proposed model. Then, the thesis targets the efficient porting of the inference process of image processing CNNs to edge-oriented embedded accelerator devices. The thesis opts for CNN acceleration based on Field-Programmable Gate Arrays (FPGAs) and contributes the adopted development flow which utilizes the Xilinx Vitis AI framework. Apart from exploring the capabilities of Vitis AI, including its advanced quantization solutions, the thesis also showcases an acceleration approach for accelerating different processes of a single computer vision task by taking advantage of the heterogeneous resources of the FPGA. The execution time and throughput results of the CNN models, for the tasks of binary semantic segmentation for cloud detection as well as image regression for irradiance estimation, on the FPGA, showcase the real-time processing capabilities of the accelerator. Finally, the thesis contributes the design details of a bi-directional interfacing system for high-throughput and fault-tolerant image transfers between deep learning embedded accelerators, in the context of on-board payload data processing architectures. The interfacing system is developed for interfacing an FPGA with the Intel Movidius Myriad 2 and the extensive testing campaign based on both commercial as well as prototype hardware platforms, shows that it can achieve a bit-rate of up to 2.4 Gbps duplex image data transfers

    Onboard Mission- and Contingency Management based on Behavior Trees for Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have gained significant attention for their potential in various sectors, including surveillance, logistics, and disaster management. This thesis focuses on developing a novel onboard mission and contingency management system based on Behavior Trees for UAVs. The study aims to assert if behavior trees can be effectively applied to this domain and how they perform with respect to other modelling architectures. Furthermore, this document explores which tree structures are more efficient, good-design practices and behavior tree limitations. Overall, this thesis addresses the challenge of autonomous onboard decision-making of UAVs in complex and dynamic environments, particularly in the context of delivery missions in off-shore wind farms. The developed architecture is tested in a simulated environment. The research integrates a Skill Manager, a Mission Planner, and a Mission and Contingency Manager. The architecture leverages Behavior Trees to facilitate both mission execution and contingency management. The thesis also presents a quantitative analysis of key performance indicators, providing a comparative evaluation against traditional architectures like Finite State Machines. The results indicate that the proposed system is efficient in mission execution and effective in handling contingencies. This study offers a comprehensive structure targeting onboard planning, contingency management and concurrent actions execution. It also presents a quantitative analysis of Behavior Trees' performance in UAV mission execution and reactivity to contingent situations. It contributes to the ongoing discourse on UAV autonomy, offering insights beneficial for the broader deployment of UAVs in various industrial applications

    Flexible Hardware-based Security-aware Mechanisms and Architectures

    Get PDF
    For decades, software security has been the primary focus in securing our computing platforms. Hardware was always assumed trusted, and inherently served as the foundation, and thus the root of trust, of our systems. This has been further leveraged in developing hardware-based dedicated security extensions and architectures to protect software from attacks exploiting software vulnerabilities such as memory corruption. However, the recent outbreak of microarchitectural attacks has shaken these long-established trust assumptions in hardware entirely, thereby threatening the security of all of our computing platforms and bringing hardware and microarchitectural security under scrutiny. These attacks have undeniably revealed the grave consequences of hardware/microarchitecture security flaws to the entire platform security, and how they can even subvert the security guarantees promised by dedicated security architectures. Furthermore, they shed light on the sophisticated challenges particular to hardware/microarchitectural security; it is more critical (and more challenging) to extensively analyze the hardware for security flaws prior to production, since hardware, unlike software, cannot be patched/updated once fabricated. Hardware cannot reliably serve as the root of trust anymore, unless we develop and adopt new design paradigms where security is proactively addressed and scrutinized across the full stack of our computing platforms, at all hardware design and implementation layers. Furthermore, novel flexible security-aware design mechanisms are required to be incorporated in processor microarchitecture and hardware-assisted security architectures, that can practically address the inherent conflict between performance and security by allowing that the trade-off is configured to adapt to the desired requirements. In this thesis, we investigate the prospects and implications at the intersection of hardware and security that emerge across the full stack of our computing platforms and System-on-Chips (SoCs). On one front, we investigate how we can leverage hardware and its advantages, in contrast to software, to build more efficient and effective security extensions that serve security architectures, e.g., by providing execution attestation and enforcement, to protect the software from attacks exploiting software vulnerabilities. We further propose that they are microarchitecturally configured at runtime to provide different types of security services, thus adapting flexibly to different deployment requirements. On another front, we investigate how we can protect these hardware-assisted security architectures and extensions themselves from microarchitectural and software attacks that exploit design flaws that originate in the hardware, e.g., insecure resource sharing in SoCs. More particularly, we focus in this thesis on cache-based side-channel attacks, where we propose sophisticated cache designs, that fundamentally mitigate these attacks, while still preserving performance by enabling that the performance security trade-off is configured by design. We also investigate how these can be incorporated into flexible and customizable security architectures, thus complementing them to further support a wide spectrum of emerging applications with different performance/security requirements. Lastly, we inspect our computing platforms further beneath the design layer, by scrutinizing how the actual implementation of these mechanisms is yet another potential attack surface. We explore how the security of hardware designs and implementations is currently analyzed prior to fabrication, while shedding light on how state-of-the-art hardware security analysis techniques are fundamentally limited, and the potential for improved and scalable approaches

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics

    Get PDF
    In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neuromorphic Auditory Sensor was integrated within the iCub robotic platform, being the first time that an event-based cochlea is used in a humanoid robot. Then, the conclusions obtained are presented and new features and improvements are proposed for future works.En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimiento de las arquitecturas de procesamiento de audio neuromórfico en tiempo real propuestas. Se utilizó un generador central de patrones guiado por audio para controlar un robot hexápodo en tiempo real utilizando redes neuronales pulsantes en SpiNNaker. A continuación, se implementó una aplicación de integración sensorial que combina la localización de fuentes de sonido y la evitación de obstáculos para la navegación de robots autónomos. Por último, se integró el Sensor Auditivo Neuromórfico dentro de la plataforma robótica iCub, siendo la primera vez que se utiliza una cóclea basada en eventos en un robot humanoide. Por último, en este trabajo se presentan las conclusiones obtenidas y se proponen nuevas funcionalidades y mejoras para futuros trabajos

    Functional Programming for Embedded Systems

    Get PDF
    Embedded Systems application development has traditionally been carried out in low-level machine-oriented programming languages like C or Assembler that can result in unsafe, error-prone and difficult-to-maintain code. Functional programming with features such as higher-order functions, algebraic data types, polymorphism, strong static typing and automatic memory management appears to be an ideal candidate to address the issues with low-level languages plaguing embedded systems. However, embedded systems usually run on heavily memory-constrained devices with memory in the order of hundreds of kilobytes and applications running on such devices embody the general characteristics of being (i) I/O- bound, (ii) concurrent and (iii) timing-aware. Popular functional language compilers and runtimes either do not fare well with such scarce memory resources or do not provide high-level abstractions that address all the three listed characteristics. This work attempts to address this gap by investigating and proposing high-level abstractions specialised for I/O-bound, concurrent and timing-aware embedded-systems programs. We implement the proposed abstractions on eagerly-evaluated, statically-typed functional languages running natively on microcontrollers. Our contributions are divided into two parts - Part 1 presents a functional reactive programming language - Hailstorm - that tracks side effects like I/O in its type system using a feature called resource types. Hailstorm’s programming model is illustrated on the GRiSP microcontroller board.Part 2 comprises two papers that describe the design and implementation of Synchron, a runtime API that provides a uniform message-passing framework for the handling of software messages as well as hardware interrupts. Additionally, the Synchron API supports a novel timing operator to capture the notion of time, common in embedded applications. The Synchron API is implemented as a virtual machine - SynchronVM - that is run on the NRF52 and STM32 microcontroller boards. We present programming examples that illustrate the concurrency, I/O and timing capabilities of the VM and provide various benchmarks on the response time, memory and power usage of SynchronVM

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society
    corecore