882 research outputs found

    A NOVEL AND HYBRID WHALE OPTIMIZATION WITH RESTRICTED CROSSOVER AND MUTATION BASED FEATURE SELECTION METHOD FOR ANXIETY AND DEPRESSION

    Get PDF
    Introduction: Anxiety and depression are two leading human psychological disorders. In this work, several swarm intelligence- based metaheuristic techniques have been employed to find an optimal feature set for the diagnosis of these two human psychological disorders. Subjects and Methods: To diagnose depression and anxiety among people, a random dataset comprising 1128 instances and 46 attributes has been considered and examined. The dataset was collected and compiled manually by visiting the number of clinics situated in different cities of Haryana (one of the states of India). Afterwards, nine emerging meta-heuristic techniques (Genetic algorithm, binary Grey Wolf Optimizer, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony, Firefly Algorithm, Dragonfly Algorithm, Bat Algorithm and Whale Optimization Algorithm) have been employed to find the optimal feature set used to diagnose depression and anxiety among humans. To avoid local optima and to maintain the balance between exploration and exploitation, a new hybrid feature selection technique called Restricted Crossover Mutation based Whale Optimization Algorithm (RCM-WOA) has been designed. Results: The swarm intelligence-based meta-heuristic algorithms have been applied to the datasets. The performance of these algorithms has been evaluated using different performance metrics such as accuracy, sensitivity, specificity, precision, recall, f-measure, error rate, execution time and convergence curve. The rate of accuracy reached utilizing the proposed method RCM-WOA is 91.4%. Conclusion: Depression and Anxiety are two critical psychological disorders that may lead to other chronic and life-threatening human disorders. The proposed algorithm (RCM-WOA) was found to be more suitable compared to the other state of art methods

    An Efficient feature selection algorithm for the spam email classification

    Get PDF
    The existing spam email classification systems are suffering from the problems of low accuracy due to the high dimensionality of the associated feature selection (FS) process. But being a global optimization process in machine learning, FS is mainly aimed at reducing the redundancy of dataset to create a set of acceptable and accurate results. This study presents the combination of Chaotic Particle Swarm Optimization (PSO) algorithm with Artificial Bees Colony (ABC) for the reduction of features dimensionality in a bid to improve spam emails classification accuracy. The features for each particle in this work were represented in a binary form, meaning that they were transformed into binary using a sigmoid function. The features selection was based on a fitness function that depended on the obtained accuracy using SVM. The proposed system was evaluated for performance by considering the performance of the classifier and the selected features vectors dimension which served as the input to the classifier; this evaluation was done using the Spam Base dataset and from the results, the PSO-ABC classifier performed well in terms of FS even with a small set of selected features

    Hybrid ACO and TOFA feature selection approach for text classification

    Get PDF
    With the highly increasing availability of text data on the Internet, the process of selecting an appropriate set of features for text classification becomes more important, for not only reducing the dimensionality of the feature space, but also for improving the classification performance. This paper proposes a novel feature selection approach to improve the performance of text classifier based on an integration of Ant Colony Optimization algorithm (ACO) and Trace Oriented Feature Analysis (TOFA). ACO is metaheuristic search algorithm derived by the study of foraging behavior of real ants, specifically the pheromone communication to find the shortest path to the food source. TOFA is a unified optimization framework developed to integrate and unify several state-of-the-art dimension reduction algorithms through optimization framework. It has been shown in previous research that ACO is one of the promising approaches for optimization and feature selection problems. TOFA is capable of dealing with large scale text data and can be applied to several text analysis applications such as text classification, clustering and retrieval. For classification performance yet effective, the proposed approach makes use of TOFA and classifier performance as heuristic information of ACO. The results on Reuters and Brown public datasets demonstrate the effectiveness of the proposed approach. © 2012 IEEE
    • …
    corecore