20,103 research outputs found

    A Novel High Frequency Encoding Algorithm for Image Compression

    Get PDF
    In this paper a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the Discrete Cosine Transform (DCT) together with a high frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) Divide the image into blocks and apply DCT to each block; (2) Apply a high frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a Minimized Array; (3) Build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) Apply a delta or differential operator to the list of DC-components; and (5) Apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000

    A novel steganography approach for audio files

    Get PDF
    We present a novel robust and secure steganography technique to hide images into audio files aiming at increasing the carrier medium capacity. The audio files are in the standard WAV format, which is based on the LSB algorithm while images are compressed by the GMPR technique which is based on the Discrete Cosine Transform (DCT) and high frequency minimization encoding algorithm. The method involves compression-encryption of an image file by the GMPR technique followed by hiding it into audio data by appropriate bit substitution. The maximum number of bits without significant effect on audio signal for LSB audio steganography is 6 LSBs. The encrypted image bits are hidden into variable and multiple LSB layers in the proposed method. Experimental results from observed listening tests show that there is no significant difference between the stego audio reconstructed from the novel technique and the original signal. A performance evaluation has been carried out according to quality measurement criteria of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR)

    Colour image coding with wavelets and matching pursuit

    Get PDF
    This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio

    Image compression based on 2D Discrete Fourier Transform and matrix minimization algorithm

    Get PDF
    In the present era of the internet and multimedia, image compression techniques are essential to improve image and video performance in terms of storage space, network bandwidth usage, and secure transmission. A number of image compression methods are available with largely differing compression ratios and coding complexity. In this paper we propose a new method for compressing high-resolution images based on the Discrete Fourier Transform (DFT) and Matrix Minimization (MM) algorithm. The method consists of transforming an image by DFT yielding the real and imaginary components. A quantization process is applied to both components independently aiming at increasing the number of high frequency coefficients. The real component matrix is separated into Low Frequency Coefficients (LFC) and High Frequency Coefficients (HFC). Finally, the MM algorithm followed by arithmetic coding is applied to the LFC and HFC matrices. The decompression algorithm decodes the data in reverse order. A sequential search algorithm is used to decode the data from the MM matrix. Thereafter, all decoded LFC and HFC values are combined into one matrix followed by the inverse DFT. Results demonstrate that the proposed method yields high compression ratios over 98% for structured light images with good image reconstruction. Moreover, it is shown that the proposed method compares favorably with the JPEG technique based on compression ratios and image quality
    • …
    corecore