5,203 research outputs found

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Balancing labor requirements in a manufacturing environment

    Get PDF
    ā€œThis research examines construction environments within manufacturing facilities, specifically semiconductor manufacturing facilities, and develops a new optimization method that is scalable for large construction projects with multiple execution modes and resource constraints. The model is developed to represent real-world conditions in which project activities do not have a fixed, prespecified duration but rather a total amount of work that is directly impacted by the level of resources assigned. To expand on the concept of resource driven project durations, this research aims to mimic manufacturing construction environments by allowing a non-continuous resource allocation to project tasks. This concept allows for resources to shift between projects in order to achieve the optimal result for the project manager. Our model generates a novel multi-objective resource constrained project scheduling problem. Specifically, two objectives are studied; the minimization of the total direct labor cost and the minimization of the resource leveling. This research will utilize multiple techniques to achieve resource leveling and discuss the advantage each one provides to the project team, as well as a comparison of the Pareto Fronts between the given resource leveling and cost minimization objective functions. Finally, a heuristic is developed utilizing partial linear relaxation to scale the optimization model for large scale projects. The computation results from multiple randomly generated case studies show that the new heuristic method is capable of generating high quality solutions at significantly less computational timeā€--Abstract, page iv

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Longterm schedule optimization of an underground mine under geotechnical and ventilation constraints using SOT

    Get PDF
    Long-term mine scheduling is complex as well time and labour intensive. Yet in the mainstream of the mining industry, there is no computing program for schedule optimization and, in consequence, schedules are still created manually. The objective of this study was to compare a base case schedule generated with the Enhanced Production Scheduler (EPSĀ®) and an optimized schedule generated with the Schedule Optimization Tool (SOT). The intent of having an optimized schedule is to improve the project value for underground mines. This study shows that SOT generates mine schedules that improve the Net Present Value (NPV) associated with orebody extraction. It does so by means of systematically and automatically exploring the options to vary the sequence and timing of mine activities, subject to constraints. First, a conventional scheduling method (EPSĀ®) was adopted to identify a schedule of mining activities that satisfied basic sets of constraints, including physical adjacencies of mining activities and operational resource capacity. Additional constraint scenarios explored were geotechnical and ventilation, which negatively effect development rates. Next, the automated SOT procedure was applied to determine whether the schedules could be improved upon. It was demonstrated that SOT permitted the rapid re-assessment of project value when new constraint scenarios were applied. This study showed that the automated schedule optimization added value to the project every time it was applied. In addition, the reoptimizing and re-evaluating was quickly achieved. Therefore, the tool used in this research produced more optimized schedules than those produced using conventional scheduling methods.Master of Applied Science (MASc) in Natural Resources Engineerin

    A Decision Support System for Dynamic Integrated Project Scheduling and Equipment Operation Planning

    Get PDF
    Common practice in scheduling under limited resource availability is to first schedule activities with the assumption of unlimited resources, and then assign required resources to activities until available resources are exhausted. The process of matching a feasible resource plan with a feasible schedule is called resource allocation. Then, to avoid sharp fluctuations in the resource profile, further adjustments are applied to both schedule and resource allocation plan within the limits of feasibility constraints. This process is referred to as resource leveling in the literature. Combination of these three stages constitutes the standard approach of top-down scheduling. In contrast, when scarce and/or expensive resource is to be scheduled, first a feasible and economical resource usage plan is established and then activities are scheduled accordingly. This practice is referred to as bottom-up scheduling in the literature. Several algorithms are developed and implemented in various commercial scheduling software packages to schedule based on either of these approaches. However, in reality resource loaded scheduling problems are somewhere in between these two ends of the spectrum. Additionally, application of either of these conventional approaches results in just a feasible resource loaded schedule which is not necessarily the cost optimal solution. In order to find the cost optimal solution, activity scheduling and resource allocation problems should be considered jointly. In other words, these two individual problems should be formulated and solved as an integrated optimization problem. In this research, a novel integrated optimization model is proposed for solving the resource loaded scheduling problems with concentration on construction heavy equipment being the targeted resource type. Assumptions regarding this particular type of resource along with other practical assumptions are provided for the model through inputs and constraints. The objective function is to minimize the fraction of the execution cost of resource loaded schedule which varies based on the selected solution and thus, considered to be the model's decision making criterion. This fraction of cost which hereafter is referred to as operation cost, encompasses four components namely schedule delay cost, shipping, rental and ownership costs for equipment

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    • ā€¦
    corecore