14 research outputs found

    Machine Learning Approach for Credit Score Predictions

    Get PDF
    This paper addresses the problem of managing the significant rise in requests for credit products that banking and financial institutions face. The aim is to propose an adaptive, dynamic heterogeneous ensemble credit model that integrates the XGBoost and Support Vector Machine models to improve the accuracy and reliability of risk assessment credit scoring models. The method employs machine learning techniques to recognise patterns and trends from past data to anticipate future occurrences. The proposed approach is compared with existing credit score models to validate its efficacy using five popular evaluation metrics, Accuracy, ROC AUC, Precision, Recall and F1_Score. The paper highlights credit scoring models’ challenges, such as class imbalance, verification latency and concept drift. The results show that the proposed approach outperforms the existing models regarding the evaluation metrics, achieving a balance between predictive accuracy and computational cost. The conclusion emphasises the significance of the proposed approach for the banking and financial sector in developing robust and reliable credit scoring models to evaluate the creditworthiness of their clients

    Improved credit scoring model using XGBoost with Bayesian hyper-parameter optimization

    Get PDF
    Several credit-scoring models have been developed using ensemble classifiers in order to improve the accuracy of assessment. However, among the ensemble models, little consideration has been focused on the hyper-parameters tuning of base learners, although these are crucial to constructing ensemble models. This study proposes an improved credit scoring model based on the extreme gradient boosting (XGB) classifier using Bayesian hyper-parameters optimization (XGB-BO). The model comprises two steps. Firstly, data pre-processing is utilized to handle missing values and scale the data. Secondly, Bayesian hyper-parameter optimization is applied to tune the hyper-parameters of the XGB classifier and used to train the model. The model is evaluated on four widely public datasets, i.e., the German, Australia, lending club, and Polish datasets. Several state-of-the-art classification algorithms are implemented for predictive comparison with the proposed method. The results of the proposed model showed promising results, with an improvement in accuracy of 4.10%, 3.03%, and 2.76% on the German, lending club, and Australian datasets, respectively. The proposed model outperformed commonly used techniques, e.g., decision tree, support vector machine, neural network, logistic regression, random forest, and bagging, according to the evaluation results. The experimental results confirmed that the XGB-BO model is suitable for assessing the creditworthiness of applicants

    Implications of macroeconomic conditions on Romanian portfolio credit risk. A cost-sensitive ensemble learning methods comparison

    Get PDF
    Credit risk assessment represents a key instrument in the decision-making of the banking and financial institutions. In this article, we present a framework for credit risk strategies to improve portfolio efficiency under a change of macroeconomic regime. The aim is to compare the accuracy of several ensemble methods (AdaBoost, Logit Boost, Gentle Boost and Random Forest) on a default retail Romanian loan portfolio under different risk adversity scenarios, a priori and posteriori the financial distress. Using cost-sensitive ensemble learning models, we concluded that regime-based credit strategy can offer a better alternative in both terms of loss allocated to the strategy as well as defaulters’ classification accurac

    Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets

    Get PDF
    For the emerging peer-to-peer (P2P) lending markets to survive, they need to employ credit-risk management practices such that an investor base is profitable in the long run. Traditionally, credit-risk management relies on credit scoring that predicts loans’ probability of default. In this paper, we use a profit scoring approach that is based on modeling the annualized adjusted internal rate of returns of loans. To validate our profit scoring models with traditional credit scoring models, we use data from a European P2P lending market, Bondora, and also a random sample of loans from the Lending Club P2P lending market. We compare the out-of-sample accuracy and profitability of the credit and profit scoring models within several classes of statistical and machine learning models including the following: logistic and linear regression, lasso, ridge, elastic net, random forest, and neural networks. We found that our approach outperforms standard credit scoring models for Lending Club and Bondora loans. More specifically, as opposed to credit scoring models, returns across all loans are 24.0% (Bondora) and 15.5% (Lending Club) higher, whereas accuracy is 6.7% (Bondora) and 3.1% (Lending Club) higher for the proposed profit scoring models. Moreover, our results are not driven by manual selection as profit scoring models suggest investing in more loans. Finally, even if we consider data sampling bias, we found that the set of superior models consists almost exclusively of profit scoring models. Thus, our results contribute to the literature by suggesting a paradigm shift in modeling credit-risk in the P2P market to prefer profit as opposed to credit-risk scoring models

    Data Science for Finance: Targeted Learning from (Big) Data to Economic Stability and Financial Risk Management

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Statistics and EconometricsThe modelling, measurement, and management of systemic financial stability remains a critical issue in most countries. Policymakers, regulators, and managers depend on complex models for financial stability and risk management. The models are compelled to be robust, realistic, and consistent with all relevant available data. This requires great data disclosure, which is deemed to have the highest quality standards. However, stressed situations, financial crises, and pandemics are the source of many new risks with new requirements such as new data sources and different models. This dissertation aims to show the data quality challenges of high-risk situations such as pandemics or economic crisis and it try to theorize the new machine learning models for predictive and longitudes time series models. In the first study (Chapter Two) we analyzed and compared the quality of official datasets available for COVID-19 as a best practice for a recent high-risk situation with dramatic effects on financial stability. We used comparative statistical analysis to evaluate the accuracy of data collection by a national (Chinese Center for Disease Control and Prevention) and two international (World Health Organization; European Centre for Disease Prevention and Control) organizations based on the value of systematic measurement errors. We combined excel files, text mining techniques, and manual data entries to extract the COVID-19 data from official reports and to generate an accurate profile for comparisons. The findings show noticeable and increasing measurement errors in the three datasets as the pandemic outbreak expanded and more countries contributed data for the official repositories, raising data comparability concerns and pointing to the need for better coordination and harmonized statistical methods. The study offers a COVID-19 combined dataset and dashboard with minimum systematic measurement errors and valuable insights into the potential problems in using databanks without carefully examining the metadata and additional documentation that describe the overall context of data. In the second study (Chapter Three) we discussed credit risk as the most significant source of risk in banking as one of the most important sectors of financial institutions. We proposed a new machine learning approach for online credit scoring which is enough conservative and robust for unstable and high-risk situations. This Chapter is aimed at the case of credit scoring in risk management and presents a novel method to be used for the default prediction of high-risk branches or customers. This study uses the Kruskal-Wallis non-parametric statistic to form a conservative credit-scoring model and to study its impact on modeling performance on the benefit of the credit provider. The findings show that the new credit scoring methodology represents a reasonable coefficient of determination and a very low false-negative rate. It is computationally less expensive with high accuracy with around 18% improvement in Recall/Sensitivity. Because of the recent perspective of continued credit/behavior scoring, our study suggests using this credit score for non-traditional data sources for online loan providers to allow them to study and reveal changes in client behavior over time and choose the reliable unbanked customers, based on their application data. This is the first study that develops an online non-parametric credit scoring system, which can reselect effective features automatically for continued credit evaluation and weigh them out by their level of contribution with a good diagnostic ability. In the third study (Chapter Four) we focus on the financial stability challenges faced by insurance companies and pension schemes when managing systematic (undiversifiable) mortality and longevity risk. For this purpose, we first developed a new ensemble learning strategy for panel time-series forecasting and studied its applications to tracking respiratory disease excess mortality during the COVID-19 pandemic. The layered learning approach is a solution related to ensemble learning to address a given predictive task by different predictive models when direct mapping from inputs to outputs is not accurate. We adopt a layered learning approach to an ensemble learning strategy to solve the predictive tasks with improved predictive performance and take advantage of multiple learning processes into an ensemble model. In this proposed strategy, the appropriate holdout for each model is specified individually. Additionally, the models in the ensemble are selected by a proposed selection approach to be combined dynamically based on their predictive performance. It provides a high-performance ensemble model to automatically cope with the different kinds of time series for each panel member. For the experimental section, we studied more than twelve thousand observations in a portfolio of 61-time series (countries) of reported respiratory disease deaths with monthly sampling frequency to show the amount of improvement in predictive performance. We then compare each country’s forecasts of respiratory disease deaths generated by our model with the corresponding COVID-19 deaths in 2020. The results of this large set of experiments show that the accuracy of the ensemble model is improved noticeably by using different holdouts for different contributed time series methods based on the proposed model selection method. These improved time series models provide us proper forecasting of respiratory disease deaths for each country, exhibiting high correlation (0.94) with Covid-19 deaths in 2020. In the fourth study (Chapter Five) we used the new ensemble learning approach for time series modeling, discussed in the previous Chapter, accompany by K-means clustering for forecasting life tables in COVID-19 times. Stochastic mortality modeling plays a critical role in public pension design, population and public health projections, and in the design, pricing, and risk management of life insurance contracts and longevity-linked securities. There is no general method to forecast the mortality rate applicable to all situations especially for unusual years such as the COVID-19 pandemic. In this Chapter, we investigate the feasibility of using an ensemble of traditional and machine learning time series methods to empower forecasts of age-specific mortality rates for groups of countries that share common longevity trends. We use Generalized Age-Period-Cohort stochastic mortality models to capture age and period effects, apply K-means clustering to time series to group countries following common longevity trends, and use ensemble learning to forecast life expectancy and annuity prices by age and sex. To calibrate models, we use data for 14 European countries from 1960 to 2018. The results show that the ensemble method presents the best robust results overall with minimum RMSE in the presence of structural changes in the shape of time series at the time of COVID-19. In this dissertation’s conclusions (Chapter Six), we provide more detailed insights about the overall contributions of this dissertation on the financial stability and risk management by data science, opportunities, limitations, and avenues for future research about the application of data science in finance and economy

    A dynamic credit scoring model based on survival gradient boosting decision tree approach

    Get PDF
    Credit scoring, which is typically transformed into a classification problem, is a powerful tool to manage credit risk since it forecasts the probability of default (PD) of a loan application. However, there is a growing trend of integrating survival analysis into credit scoring to provide a dynamic prediction on PD over time and a clear explanation on censoring. A novel dynamic credit scoring model (i.e., SurvXGBoost) is proposed based on survival gradient boosting decision tree (GBDT) approach. Our proposal, which combines survival analysis and GBDT approach, is expected to enhance predictability relative to statistical survival models. The proposed method is compared with several common benchmark models on a real-world consumer loan dataset. The results of out-of-sample and out-of-time validation indicate that SurvXGBoost outperform the benchmarks in terms of predictability and misclassification cost. The incorporation of macroeconomic variables can further enhance performance of survival models. The proposed SurvXGBoost meanwhile maintains some interpretability since it provides information on feature importance. First published online 14 December 202

    Financial Risk Assessment using Machine Learning Engineering (FRAME): Scenario based Quantitative Analysis under Uncertainty

    Get PDF
    Risk management functions, under uncertainty, in the Banking Industry have been changing and will continue to change with the recent advancements and innovations. Embracing uncertainty and working with measurable risk becomes critical, therefore quantitative risk severity assessment is critical for sustainable financial excellence. In this paper, the authors propose Financial Risk Assessment using Machine Learning Engineering (FRAME)  based on artificial intelligence (AI) and machine learning (ML), which has two significant contributions. Firstly, adoption of machine learning models for banking towards risk quantification and secondly, granularity that emphases on customized logic via multi-factor analysis modeling at different levels of abstraction connecting machine learning models. These contributions will help Financial Institutions (Fis) that will gain the most benefits and opportunities.  In a nutshell, the framework analysis presented in this paper is intended as a step towards building a framework of risk modeling from qualitative to quantitative, viewed at different levels of abstraction to access risk severity in the banking applications

    Study of Banking Customers Credit Scoring Indicators Using Artificial Intelligence and Delphi Method

    Get PDF
    With the importance of lending in the banking industry, it is very important to use the indicators affecting credit to decide on lending. The purpose of the present study is to identify and prioritize the effective features in customer accreditation using the viewpoints of bank experts in Kerman and to compare them with existing indicators in models extracted from Meta-Heuristic and Artificial Intelligence methods. The aim is to find out whether there is a match between the human views that arise from knowledge and experience and the views of artificial intelligence that look at the problem as black-box modeling. Required data were collected by questionnaire method and Quantum Binary particle swarm optimization algorithm and analyzed by Delphi. The results show that the selected indices have 80% overlap between the two methods. Due to the results of research and high accuracy of artificial intelligence techniques, it is suggested that in order to give credit to customers in banks and financial and credit institutions, to consider a higher weight for these indicators
    corecore