5,097 research outputs found

    DocDeshadower: Frequency-aware Transformer for Document Shadow Removal

    Full text link
    The presence of shadows significantly impacts the visual quality of scanned documents. However, the existing traditional techniques and deep learning methods used for shadow removal have several limitations. These methods either rely heavily on heuristics, resulting in suboptimal performance, or require large datasets to learn shadow-related features. In this study, we propose the DocDeshadower, a multi-frequency Transformer-based model built on Laplacian Pyramid. DocDeshadower is designed to remove shadows at different frequencies in a coarse-to-fine manner. To achieve this, we decompose the shadow image into different frequency bands using Laplacian Pyramid. In addition, we introduce two novel components to this model: the Attention-Aggregation Network and the Gated Multi-scale Fusion Transformer. The Attention-Aggregation Network is designed to remove shadows in the low-frequency part of the image, whereas the Gated Multi-scale Fusion Transformer refines the entire image at a global scale with its large perceptive field. Our extensive experiments demonstrate that DocDeshadower outperforms the current state-of-the-art methods in both qualitative and quantitative terms

    BEHAVIOR OF BUSBAR DIFFERENTIAL RELAYS WITH AIR-GAP CORE CURRENT TRANSFORMERS

    Get PDF
    Protective relays normally estimate the magnitude and phase angle of current. Since the level of current is normally too high to permit a direct connection to the power system, a Current Transformer (CT) is used to scale down the current value. A CT should faithfully replicate waveform of the primary current. Power utilities normally use air-gap core and solid-core CTs. Air-gap core CTs are expensive and hard to maintain but they are able to reproduce the primary current without becoming saturated unlike solid-core CTs. Nowadays relay manufacturers claim that no matter what type of CT is used in the power grid, protective relays can intelligently sense a saturated waveform produced by a CT, and facilitates a correct decision, based on a unique algorithm. Therefore, continued use of the air-gap core CTs is being questioned. To verify relay manufacturer’s claim, behavior of protective relays when subjected to solid-core and air-gap core CT output waveforms need to be analyzed. Therefore, a mathematical model for both CT types is needed. Output waveform of a solid-core CT is already simulated by IEEE Power System Relaying Committee. In this thesis, a mathematical model of an air-gap core CT is developed and simulated on the Excel platform. Output waveform of the proposed model is then verified using the IEEE PSRC CT Simulator. Then, two commercially available busbar differential relays with CT saturation detection logic were subjected to the output waveforms of solid-core and air- gap core CTs. After testing about hundred scenarios on each relay, it is concluded that first, there is no difference in the relays’ performances for internal faults. Besides, for external faults, an air-gap core CT renders the trip output less sensitive to the relay setting. Further, the relay might be considerably slow in operation for an evolving fault, if a solid-core CT is involved

    Adaptive Boundary Control Using the Natural Switching Surfaces for Flyback Converters

    Get PDF
    The derivation and implementation of the natural switching surfaces (NSS) considering certain parametric uncertainties for a flyback converter operating in the boundary conduction mode (BCM) is the main focus of this paper. The NSS with nominal parameters presents many benefits for the control of nonlinear systems; for example, fast transient response under load-changing conditions. However, the performance worsens considerably when the converter actual parameters are different from the ones used in the design process. Therefore, a novel control strategy for NSS considering the effects of parameter uncertainties is proposed. This control law can estimate and adapt the control trajectories in a minimum number of switching cycles to obtain excellent performances even under extreme parameter uncertainties. The analytical derivation of the proposed adaptive switching surfaces is presented together with simulations and experimental results showing adequate performance under different tests, including comparisons with a standard PI controller

    A study of secondary winding designs for the two-coil Tesla transformer

    Get PDF
    The multi-order response of the tuned secondary circuit of a Tesla transformer, following impulse excitation from its tuned primary circuit, is presented and analysed at the fundamental resonant frequency and at higher-order mode frequencies. A novel way of modifying the frequency response of the secondary coil is then investigated by utilising a technique normally applied to the design of a certain type of filter known as a helical filter. In general, these are used in radio and microwave frequency circuits in order to pass certain frequencies with little attenuation whilst significantly attenuating other frequencies. Design techniques, developed over several decades, modify and optimise the performance of such filters. The frequency response of the helical filter is modified by altering the geometry of the helical resonator component therein, which is typically in the form of an air-cored single-layer solenoid. A Tesla transformer whose secondary is constructed to be some form of single-layer solenoidal winding resonates at its designed frequency - its fundamental mode - but also at non-integer harmonics (higher-order anharmonic frequencies, also known as overtones). Those multi-order oscillatory voltages and currents energised in the secondary circuit have been identified and measured and research has determined the fundamental and higher-order mode frequencies and amplitudes for various experimental secondary winding configurations derived from helical filter design techniques. Applied to the Tesla transformer secondary winding, such techniques lead to a new design with a performance that is improved by the suppression of higher- order anharmonic frequencies whilst imparting little change to the fundamental response. It is anticipated that this feature will lead to Tesla transformers which exhibit enhanced spectral purity and which will be better suited to use in certain pulsed power applications than conventionally wound designs

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen

    Study of a Symmetrical LLC Dual-Active Bridge Resonant Converter Topology for Battery Storage Systems

    Get PDF
    A symmetrical LLC resonant converter topology with a fixed-frequency quasi-triple phase-shift modulation method is proposed for battery-powered electric traction systems with extensions to other battery storage systems. Operation of the converter with these methods yields two unique transfer characteristics and is dependent on the switching frequency. The converter exhibits several desirable features: 1) load-independent buck-boost voltage conversion when operated at the low-impedance resonant frequency, allowing for dc-link voltage regulation, zero-voltage switching across a wide load range, and intrinsic load transient resilience; 2) power flow control when operated outside the low-impedance resonance for integrated battery charging; 3) and simple operational mode selection based on needed functionality with only a single control variable per mode. Derivation of the transfer characteristics for three operation cases using exponential Fourier series coefficients is presented. Pre-design evaluation of the S-LLC converter is presented using these analytical methods and corroborated through simulation. Furthermore, the construction of a rapid-prototyping magnetics design tool developed for high-frequency transformer designs inclusive of leakage inductance, which is leveraged to create the magnetic elements needed for this work. Two 2kW prototypes of the proposed topology are constructed to validate the analysis, with one prototype having a transformer incorporating the series resonant inductance and secondary clamp inductance into the transformer leakage and magnetizing inductance, respectively. A test bench is presented to validate the analysis methods and proposed multi-operational control scheme. Theoretical and experimental results are compared, thus demonstrating the feasibility of the new multi-mode operation scheme of the S-LLC converter topology

    Implementation of Pilot Protection System for Large Scale Distribution System like The Future Renewable Electric Energy Distribution Management Project

    Get PDF
    abstract: A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.Dissertation/ThesisM.S. Electrical Engineering 201

    A Novice Approach of Designing CMOS Based Switchable Filters for ASP Applications

    Get PDF
    A switchable filter can be designed and fabricated with the desired range and parameters, materials say quartz substrate for RF MEMS based applications. The mathematical modeling of the resonators using the desired characteristics of the capacitive coupled filters can be implemented with low insertion loss. In order to design this filter, one can employ a PIN diode along with a semi-lumped resonator. This PIN diode has been used so as it performs the function of electronic switching i.e. the activating and deactivating the filter circuit action without any compromise in the overall performance of the circuit. These filters circuit are designed and implemented in a way so that it can accommodate the external quality factor in order to ensure a good impedance match at each band of operation. The most dominant parameters and characteristics of the second order switchable filter realization. In this work, the author has put an effort to discuss the most desired parameters of the various switchable filters. In these filter circuits, CMOS devices has been used to design because of their well accepted features i.e. low power loss and requirement of low input signal for operation in addition to other ones. The performance of the proposed CMOS based switchable filters has been discussed with its simulated results that have been carried out by using pSpice software with 0.18 micron technology. The insertion loss of this circuit is with the acceptable limits i.e. 2.9 dB and a tenability within two desired frequencies

    Non-Invasive Picosecond Pulse System for Electrostimulation

    Get PDF
    Picosecond pulsed electric fields have been shown to have stimulatory effects, such as calcium influx, activation of action potential, and membrane depolarization, on biological cells. Because the pulse duration is so short, it has been hypothesized that the pulses permeate a cell and can directly affect intracellular cell structures by bypassing the shielding of the membrane. This provides an opportunity for studying new biophysics. Furthermore, radiating picosecond pulses can be efficiently done by a compact antenna because the antenna size is comparable to the pulse width. However, all of the previous bioelectric studies regarding picosecond pulses have been conducted in vitro, using electrodes. There is not yet a device which can non-invasively deliver picosecond-pulsed electric fields to neurological tissue for therapeutic applications. It is unclear whether a radiated electric field at a given penetration depth can reach the threshold to cause biological effects. In this dissertation, a picosecond- pulsed electric field system designed for the electrosimulation of neural cells is presented. This begins with the design of an ultra-wideband biconical dielectric rod antenna. It consists of a dielectrically loaded V-conical launcher which feeds a cylindrical waveguide. The waveguide then transitions into a taper, which acts like a lens to focus the energy in the tissue target. To describe the antenna delivery of picosecond pulses to tissues, the initial performance was simulated using a 3-layer tissue model and then a human head model. The final model was shown to effectively deliver pulses of 11.5 V/m to the brain for a 1 V input. The spot size of the stimulation is on the order of 1 cm. The electric field was able to penetrate to a depth of 2 cm, which is equal to the pulse width of a 200 ps pulse. The antenna was constructed and characterized in free space in time domain and in frequency domain. The experimental results have a good agreement with the simulation. The ultimate biological application relies on adequate electric field. To reach a threshold electric field for effective stimulation, the antenna should be driven by a high voltage, picosecond-pulsed power supply, which, in our case, consists of a nanosecond charging transformer, a parallel-plate transmission line, and a picosecond discharging switch. This transformer was used to charge a parallel-plate transmission line, with the antenna as the load. To generate pulses with a rise time of hundreds of picoseconds, an oil switch with a millimeter gap was used. For the charging, a dual resonance pulse transformer was designed and constructed. The novel aspect of this transformer is has a fast charge time. It was shown to be capable of producing over 100 kV voltages in less than 100 ns. After the closing of the peaking switch and the picosecond rise time generation, the antenna was able to create an electric field of 600 V/cm in the air at a distance of 3 cm. This field was comparable to the simulation. Higher voltage operation was met with dielectric breakdown across the insulation layer that separates the high voltage side and the ground side. Before the designed antenna is used in vivo, it is critical to determine the biological effect of picosecond pulses. This is especially important if we focus on stimulatory effects, which require that the electric field intensity be close to the range that the antenna system can deliver. Toward that end, neural stem cells were chosen to study for the proliferation, metabolism, and gene expression. Instead of using the antenna, the electrodes were used to deliver the pulses to the cells. In order to treat enough cells for downstream analyses, the electrodes were mounted on a 3-D printer head, which could be moved freely and could be controlled accurately by programming. The results show that pulses on the order of 20 kV/cm affect the proliferation, metabolism, and gene expression of both neural and mesenchymal stem cells, without reducing viability. In general, we came to the conclusion that picosecond pulses can be a useful stimulus for a variety of applications, but the possibility of using antennas to directly stimulate tissue functions relies on the development of a pulsed power system, high voltage insulation, and antenna material
    • …
    corecore