51 research outputs found

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    An improved fuzzy clustering approach for image segmentation

    Get PDF
    Fuzzy clustering techniques have been widely used in automated image segmentation. However, since the standard fuzzy c-means (FCM) clustering algorithm does not consider any spatial information, it is highly sensitive to noise. In this paper, we present an extension of the FCM algorithm to overcome this drawback, by incorporating spatial neighborhood information into a new similarity measure. We consider that spatial information depends on the relative location and features of the neighboring pixels. The performance of the proposed algorithm is tested on synthetic and real images with different noise levels. Experimental quantitative and qualitative segmentation results show that the proposed method is effective, more robust to noise and preserves the homogeneity of the regions better than other FCM-based methods

    Study of Segmentation Techniques for Medical Images

    Get PDF
    Segmentation techniques are widely used in for the application of Medical Images. These techniques play a crucial role by automating or facilitating the delineation of anatomical structures and other regions of interest . Image Segmentation is particularly dicult due to restrictions imposed by biological variation and image acquisition . Goal of medical image segmentation is to perform operations on medical images to identify patterns in the use of interaction and develop qualitative criteria to evaluate interactive segmentation methods and extract information from it .Techniques available for segmentation are specic to application and the segment of biological detail to be studied . Number of techniques require wide use of Algorithms specically for certain segmentation procedure of medical images . From the Medical Image processing point of view the classication of segmentation techniques is on gray level and texture based techniques. Approaches have been proposed to segment CT and MR Images. In the following chapters we discuss the reviewed methods with respect to all information provided by the user and the parameters for the computational part. Medical image segmentation techniques require some form of expert supervision to provide accurate and consistent identication of anatomic structures. A novel segmentation technique was developed that combines a knowledge-based segmentation system with a contour model. This method exploits the guidance of a higher level process to robustly perform the segmentation of kind of anatomic structures. Knowledge about the anatomic structures to be segmented is dened statistically in terms of probability density functions of parameters of location, size, and image intensity. The active contour based technique outperform the standard segmentation methods due to its capacity to fully enforce the available a priori knowledge concerning the anatomic structure of interest. The active contour algorithm is suitable for integration with high-level image understanding frameworks, and providing a robust low-level segmentation tool. Studies are required to determine whether the proposed algorithm is indeed capable of providing consistently superior segmentation

    An improved fuzzy clustering approach for image segmentation

    Get PDF
    Fuzzy clustering techniques have been widely used in automated image segmentation. However, since the standard fuzzy c-means (FCM) clustering algorithm does not consider any spatial information, it is highly sensitive to noise. In this paper, we present an extension of the FCM algorithm to overcome this drawback, by incorporating spatial neighborhood information into a new similarity measure. We consider that spatial information depends on the relative location and features of the neighboring pixels. The performance of the proposed algorithm is tested on synthetic and real images with different noise levels. Experimental quantitative and qualitative segmentation results show that the proposed method is effective, more robust to noise and preserves the homogeneity of the regions better than other FCM-based methods

    FCM Clustering Algorithms for Segmentation of Brain MR Images

    Get PDF
    The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR) brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF), Gray Matter (GM), and White Matter (WM), has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM) clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed

    Spatial fuzzy c-mean sobel algorithm with grey wolf optimizer for MRI brain image segmentation

    Get PDF
    Segmentation is the process of dividing the original image into multiple sub regions called segments in such a way that there is no intersection between any two regions. In medical images, the segmentation is hard to obtain due to the intensity similarity among various regions and the presence of noise in medical images. One of the most popular segmentation algorithms is Spatial Fuzzy C-means (SFCM). Although this algorithm has a good performance in medical images, it suffers from two issues. The first problem is lack of a proper strategy for point initialization step, which must be performed either randomly or manually by human. The second problem of SFCM is having inaccurate segmented edges. The goal of this research is to propose a robust medical image segmentation algorithm that overcomes these weaknesses of SFCM for segmenting magnetic resonance imaging (MRI) brain images with less human intervention. First, in order to find the optimum initial points, a histogram based algorithm in conjunction with Grey Wolf Optimizer (H-GWO) is proposed. The proposed H-GWO algorithm finds the approximate initial point values by the proposed histogram based method and then by taking advantage of GWO, which is a soft computing method, the optimum initial values are found. Second, in order to enhance SFCM segmentation process and achieve higher accurate segmented edges, an edge detection algorithm called Sobel was utilized. Therefore, the proposed hybrid SFCM-Sobel algorithm first finds the edges of the original image by Sobel edge detector algorithm and finally extends the edges of SFCM segmented images to the edges that are detected by Sobel. In order to have a robust segmentation algorithm with less human intervention, the H-GWO and SFCM-Sobel segmentation algorithms are integrated to have a semi-automatic robust segmentation algorithm. The results of the proposed H-GWO algorithms show that optimum initial points are achieved and the segmented images of the SFCM-Sobel algorithm have more accurate edges as compared to recent algorithms. Overall, quantitative analysis indicates that better segmentation accuracy is obtained. Therefore, this algorithm can be utilized to capture more accurate segmented in images in the era of medical imaging
    corecore