26,209 research outputs found

    Time-Dependent Current Partition in Mesoscopic Conductors

    Full text link
    The currents at the terminals of a mesoscopic conductor are evaluated in the presence of slowly oscillating potentials applied to the contacts of the sample. The need to find a charge and current conserving solution to this dynamic current partition problem is emphasized. We present results for the electro-chemical admittance describing the long range Coulomb interaction in a Hartree approach. For multiply connected samples we discuss the symmetry of the admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971

    MoM-SO: a Complete Method for Computing the Impedance of Cable Systems Including Skin, Proximity, and Ground Return Effects

    Full text link
    The availability of accurate and broadband models for underground and submarine cable systems is of paramount importance for the correct prediction of electromagnetic transients in power grids. Recently, we proposed the MoM-SO method for extracting the series impedance of power cables while accounting for skin and proximity effect in the conductors. In this paper, we extend the method to include ground return effects and to handle cables placed inside a tunnel. Numerical tests show that the proposed method is more accurate than widely-used analytic formulas, and is much faster than existing proximity-aware approaches like finite elements. For a three-phase cable system in a tunnel, the proposed method requires only 0.3 seconds of CPU time per frequency point, against the 8.3 minutes taken by finite elements, for a speed up beyond 1000 X.Comment: This paper has now been published in the IEEE Trans. on Power Delivery in Oct. 2015, vol. 30, no. 5, pp. 2110-2118. DOI: 10.1109/TPWRD.2014.237859

    Analysis of resonant responses of split ring resonators using conformal mapping techniques

    Get PDF
    We report a novel method for modeling the resonant frequency response of infra-red light, in the range of 2 to 10 microns, reflected from metallic spilt ring resonators (SRRs) fabricated on a silicon substrate. The calculated positions of the TM and TE peaks are determined from the plasma frequency associated with the filling fraction of the metal array and the equivalent LC circuit defined by the SRR elements. The capacitance of the equivalent circuit is calculated using conformal mapping techniques to determine the co-planar capacitance associated with both the individual and the neighbouring elements. The inductance of the equivalent circuit is based on the self-inductance of the individual elements and the mutual inductance of the neighboring elements. The results obtained from the method are in good agreement with experimental results and simulation results obtained from a commercial FDTD simulation software package. The method allows the frequency response of a SRR to be readily calculated without complex computational methods and enables new designs to be optimised for a particular frequency response by tuning the LC circuit

    Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer

    Get PDF
    This paper characterizes three novel microwave applicators based on zero-order mode resonators for use in hyperthermia treatment of cancer. The radiation patterns are studied with numerical simulations in muscle tissue-equivalent model at 434 MHz. The relative performance of the applicators is compared in terms of reflection coefficient, current distribution, power deposition (SAR) pattern, effective field size in 2D and 3D tissue volumes, and penetration depth. One particular configuration generated the most uniform SAR pattern, with 25% SAR covering 84 % of the treatment volume extending to 1 cm depth under the aperture, while remaining above 58% coverage as deep as 3 cm under the aperture. Recommendations are made to further optimize this structure

    Spin transport in Heisenberg antiferromagnets

    Full text link
    We analyze spin transport in insulating antiferromagnets described by the XXZ Heisenberg model in two and three dimensions. Spin currents can be generated by a magnetic-field gradient or, in systems with spin-orbit coupling, perpendicular to a time-dependent electric field. The Kubo formula for the longitudinal spin conductivity is derived analogously to the Kubo formula for the optical conductivity of electronic systems. The spin conductivity is calculated within interacting spin-wave theory. In the Ising regime, the XXZ magnet is a spin insulator. For the isotropic Heisenberg model, the dimensionality of the system plays a crucial role: In d=3 the regular part of the spin conductivity vanishes linearly in the zero frequency limit, whereas in d=2 it approaches a finite zero frequency value.Comment: 9 pages, 5 figure
    • …
    corecore