7 research outputs found

    A novel framework for MR image segmentation and quantification by using MedGA.

    Get PDF
    BACKGROUND AND OBJECTIVES: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. METHODS: In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. RESULTS: The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. CONCLUSIONS: Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis

    A Computational Study on Temperature Variations in MRgFUS Treatments Using PRF Thermometry Techniques and Optical Probes.

    Get PDF
    Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS) technology represents a valid application of this ultrasound property, mainly used in oncology and neurology. In this paper; patient safety during MRgFUS treatments was investigated by a series of experiments in a tissue-mimicking phantom and performing ex vivo skin samples, to promptly identify unwanted temperature rises. The acquired MR images, used to evaluate the temperature in the treated areas, were analyzed to compare classical proton resonance frequency (PRF) shift techniques and referenceless thermometry methods to accurately assess the temperature variations. We exploited radial basis function (RBF) neural networks for referenceless thermometry and compared the results against interferometric optical fiber measurements. The experimental measurements were obtained using a set of interferometric optical fibers aimed at quantifying temperature variations directly in the sonication areas. The temperature increases during the treatment were not accurately detected by MRI-based referenceless thermometry methods, and more sensitive measurement systems, such as optical fibers, would be required. In-depth studies about these aspects are needed to monitor temperature and improve safety during MRgFUS treatments
    corecore