92 research outputs found

    Designing Origami-Adapted Deployable Modules for Soft Continuum Arms

    Get PDF
    © Springer Nature Switzerland AG 2019. Origami has several attractive attributes including deployability and portability which have been extensively adapted in designs of robotic devices. Drawing inspiration from foldable origami structures, this paper presents an engineering design process for fast making deployable modules of soft continuum arms. The process is illustrated with an example which adapts a modified accordion fold pattern to a lightweight deployable module. Kinematic models of the four-sided Accordion fold pattern is explored in terms of mechanism theory. Taking account of both the kinematic model and the materials selection, a 2D flat sheet model of the four-sided Accordion fold pattern is obtained for 3D printing. Following the design process, the deployable module is then fabricated by laminating 3D printed origami skeleton and flexible thermoplastic polyurethane (TPU) coated fabric. Preliminary tests of the prototype shown that the folding motion are enabled mainly by the flexible fabric between the gaps of thick panels of the origami skeleton and matches the kinematic analysis. The proposed approach has advantages of quick scaling dimensions, cost effective and fast fabricating thus allowing adaptive design according to specific demands of various tasks

    Magnetic Surgical Instruments for Robotic Abdominal Surgery.

    Get PDF
    This review looks at the implementation of magnetic-based approaches in surgical instruments for abdominal surgeries. As abdominal surgical techniques advance toward minimizing surgical trauma, surgical instruments are enhanced to support such an objective through the exploration of magnetic-based systems. With this design approach, surgical devices are given the capabilities to be fully inserted intraabdominally to achieve access to all abdominal quadrants, without the conventional rigid link connection with the external unit. The variety of intraabdominal surgical devices are anchored, guided, and actuated by external units, with power and torque transmitted across the abdominal wall through magnetic linkage. This addresses many constraints encountered by conventional laparoscopic tools, such as loss of triangulation, fulcrum effect, and loss/lack of dexterity for surgical tasks. Design requirements of clinical considerations to aid the successful development of magnetic surgical instruments, are also discussed

    Soft Components for Soft Robots

    Get PDF

    A Dexterous Tip-extending Robot with Variable-length Shape-locking

    Full text link
    Soft, tip-extending "vine" robots offer a unique mode of inspection and manipulation in highly constrained environments. For practicality, it is desirable that the distal end of the robot can be manipulated freely, while the body remains stationary. However, in previous vine robots, either the shape of the body was fixed after growth with no ability to manipulate the distal end, or the whole body moved together with the tip. Here, we present a concept for shape-locking that enables a vine robot to move only its distal tip, while the body is locked in place. This is achieved using two inextensible, pressurized, tip-extending, chambers that "grow" along the sides of the robot body, preserving curvature in the section where they have been deployed. The length of the locked and free sections can be varied by controlling the extension and retraction of these chambers. We present models describing this shape-locking mechanism and workspace of the robot in both free and constrained environments. We experimentally validate these models, showing an increased dexterous workspace compared to previous vine robots. Our shape-locking concept allows improved performance for vine robots, advancing the field of soft robotics for inspection and manipulation in highly constrained environments.Comment: 7 pages,10 figures. Accepted to IEEE International Conference on Rootics and Automation (ICRA) 202

    IMPROVEMENT OF GENERAL DESIGN THEORY AND METHODOLOGY WITH ITS APPLICATION TO DESIGN OF A RETRACTOR FOR VENTRAL HERNIA REPAIR SURGERY

    Get PDF
    Open surgery is an efficient way to cure massive ventral hernias in the clinic. During the surgical process, a spatula is used to prevent intestine tissues from damage of suture passer, possibly causing damage and taking time to address the spatula. Therefore, a new prototype, which could address both issues, is under consideration. In order to design the new prototype that satisfies clinical use, this study was based on the retractor design by Dr. Luo (Luo’s retractor for short), which nevertheless had many shortcomings. An observation was made to these shortcomings that they are partially due to the ad-hoc design process taken to result in Luo’s retractor). This drove the research of this thesis into a close examination of the general design theory and methodology (DTM) in literature, aiming at improvements of DTM so that it is possible to apply the DTM to improve Luo’s retractor. In this thesis, the general design theory and methodology, such as Axiomatic Design Theory (ADT) and Systematic Design Procedure (SDP), was examined closely. Several problems with them, e.g., missing a guideline to identify the so-called general function in SDP, missing a guideline to handle constraints in ADT, lack of a more formal model to capture design requirements, etc., were identified and studied. Specifically, a novel model to represent a design more formally was proposed, and a new general design process model was developed. The design of the retractor was then carried out by following the proposed general design process model with the improved DTM, which resulted in an improved retractor. The prototype of the new retractor was tested clinically with the help of surgeon (Dr. Luo) as well as simulated with the help of the finite element software. Several conclusions can be drawn from this study and they are: (1) the new retractor is a viable device and is promising for further commercialization; (2) the general design theory and methodology is now more rational, formal and robust, ready for applications and for further development towards automating the general design process. This thesis has made the following contributions to the field of medical device and to the field of general design theory and methodology. In the first field, a new medical device, i.e., retractor, is created and it will improve the ventral hernia repair surgery in terms of efficiency (time reduction by 37.5%). In the second field, this thesis provided a revised design theory and methodology that combines ADT and SDP, which may be called ADT-SDP, and has provided guidelines of how the ADT-SDP can be used for practical design problems

    Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots

    Get PDF
    © 2018 Wiley Periodicals Inc. One of the main challenges for autonomous aerial robots is to land safely on a target position on varied surface structures in real-world applications. Most of current aerial robots (especially multirotors) use only rigid landing gears, which limit the adaptability to environments and can cause damage to the sensitive cameras and other electronics onboard. This paper presents a bioinpsired landing system for autonomous aerial robots, built on the inspire–abstract–implement design paradigm and an additive manufacturing process for soft thermoplastic materials. This novel landing system consists of 3D printable Sarrus shock absorbers and soft landing pads which are integrated with an one-degree-of-freedom actuation mechanism. Both designs of the Sarrus shock absorber and the soft landing pad are analyzed via finite element analysis, and are characterized with dynamic mechanical measurements. The landing system with 3D printed soft components is characterized by completing landing tests on flat, convex, and concave steel structures and grassy field in a total of 60 times at different speeds between 1 and 2 m/s. The adaptability and shock absorption capacity of the proposed landing system is then evaluated and benchmarked against rigid legs. It reveals that the system is able to adapt to varied surface structures and reduce impact force by 540N at maximum. The bioinspired landing strategy presented in this paper opens a promising avenue in Aerial Biorobotics, where a cross-disciplinary approach in vehicle control and navigation is combined with soft technologies, enabled with adaptive morphology

    Design and synthesis of proteoglycan analogues for tissue repair and regeneration

    Get PDF
    This thesis is concerned with the design and synthesis of a novel, injectable proteoglycan analogue for tissue repair. This is of particular relevance to the restoration of disc height to a degraded nucleus pulposus of the intervertebral disc. The focus is on the use of sulfonate monomers as proteoglycan analogues, in particular sodium 2-acrylamido-2-methylpropane sulfonic acid and the potassium salt of 3-sulfopropyl acrylate. For most biomedical applications, synthetic hydrogels need to show dimensional stability to changes in pH, osmolarity, and temperature. This is readily achieved by neutral structures however ionic sulfonate containing hydrogels are responsive to environmental change which renders them difficult to manage in most tissue replacement applications. In this case osmotic responsiveness rather than stability is desirable. Therefore sulfonate based materials possess advantageous properties. This is a result of the sulfonate becoming an ideal surrogate for the sulfate group present within the structure of natural proteoglycans. This thesis reports polymerisation studies based on the production of a redox initiated copolymer system capable of polymerising in situ within a timescale of circa. 5-7 minutes. The rheological properties, osmotic drive, and residual monomer content of successful compositions is analysed. Properties are adapted to mimic those of the target natural tissue. The adaptation of the material for use as an injectable intra-ocular lens, with hyaluronic acid as an interpenetrate is reported. The synthesis of a radiopaque macromer to allow visibility of the repair system once in situ is investigated and discussed. The results presented in this thesis describe a suitable proteoglycan tissue analogue which is injectable, biomimetic, osmotically responsive and mechanically stable in its desired application

    Utilizing Compliance To Address Modern Challenges in Robotics

    Get PDF
    Mechanical compliance will be an essential component for agile robots as they begin to leave the laboratory settings and join our world. The most crucial finding of this dissertation is showing how lessons learned from soft robotics can be adapted into traditional robotics to introduce compliance. Therefore, it presents practical knowledge on how to build soft bodied sensor and actuation modules: first example being soft-bodied curvature sensors. These sensors contain both standard electronic components soldered on flexible PCBs and hyperelastic materials that cover the electronics. They are built by curing multi-material composites inside hyper elastic materials. Then it shows, via precise sensing by using magnets and Hall-effect sensors, how closed-loop control of soft actuation modules can be achieved via proprioceptive feedback. Once curvature sensing idea is verified, the dissertation describes how the same sensing methodology, along with the same multi-material manufacturing technique can be utilized to construct soft bodied tri-axial force sensors. It shows experimentally that these sensors can be used by traditional robotic grippers to increase grasping quality. At this point, I observe that compliance is an important property that robots may utilize for different types of motions. One example being Raibert\u27s 2D hopper mechanism. It uses its leg-spring to store energy while on the ground and release this energy before jumping. I observe that via soft material design, it would be possible to embed compliance directly into the linkage design itself. So I go over the design details of an extremely lightweight compliant five-bar mechanism design that can store energy when compressed via soft ligaments embedded in its joints. I experimentally show that the compliant leg design offers increased efficiency compared to a rigid counterpart. I also utilize the previously mentioned soft bodied force sensors for rapid contact detection (~5-10 Hz) in the hopper test platform. In the end, this thesis connects soft robotics with the traditional body of robotic knowledge in two aspects: a) I show that manufacturing techniques we use for soft bodied sensor/actuator designs can be utilized for creating soft ligaments that add strength and compliance to robot joints; and b) I demonstrate that soft bodied force sensing techniques can be used reliably for robotic contact detection

    SMA-Based Muscle-Like Actuation in Biologically Inspired Robots: A State of the Art Review

    Get PDF
    New actuation technology in functional or "smart" materials has opened new horizons in robotics actuation systems. Materials such as piezo-electric fiber composites, electro-active polymers and shape memory alloys (SMA) are being investigated as promising alternatives to standard servomotor technology [52]. This paper focuses on the use of SMAs for building muscle-like actuators. SMAs are extremely cheap, easily available commercially and have the advantage of working at low voltages. The use of SMA provides a very interesting alternative to the mechanisms used by conventional actuators. SMAs allow to drastically reduce the size, weight and complexity of robotic systems. In fact, their large force-weight ratio, large life cycles, negligible volume, sensing capability and noise-free operation make possible the use of this technology for building a new class of actuation devices. Nonetheless, high power consumption and low bandwidth limit this technology for certain kind of applications. This presents a challenge that must be addressed from both materials and control perspectives in order to overcome these drawbacks. Here, the latter is tackled. It has been demonstrated that suitable control strategies and proper mechanical arrangements can dramatically improve on SMA performance, mostly in terms of actuation speed and limit cycles
    • …
    corecore