10 research outputs found

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude

    A Novel User-Controlled Assisted Standing Control System for a Hybrid Neuroprosthesis

    Get PDF
    Spinal cord injury (SCI) is a serious condition with 17,000 new cases each year and an estimated total of 282,000 people in the United States who have SCI. Some people with SCI who have paraplegia suffer from paralysis, muscle spasticity, bone changes, chronic pain and other problems. Active orthoses such as the ReWalk, EXPOS, and Ekso have improved the quality of life of people with SCI. The hybrid neuroprosthesis is an active orthosis that uses functional electrical stimulation (FES) at the quadriceps and has two main purposes: restoring mobility in people with SCI and providing physical therapy for the user outside of a clinical setting. To mobilize people with SCI, the neuroprosthesis must provide assisted movement for a sitting to standing motion. A standing control system developed by the Pitt Neuromuscular Control and Robotics Laboratory (NCRL) before this proposed system did not give enough control of the movement to the user and FES alone did not provide enough torque at the knees for standing. The NCRL neuroprosthesis was modified to include a harmonic gearmotor at the knees, a thumb joystick for user control, and a force sensing walker. A control system using a finite state machine (FSM) was designed to perform hybrid standing in the neuroprosthesis. The FSM is divided into 3 states and uses 5 separate controllers: a tracking controller for forward leaning during sitting, a tracking controller to synchronize the knees, a tracking controller to lock the knees during standing, a hip tracking controller, and openloop FES. Four experiments were performed on subjects to analyze control performance, power usage, and energy consumption during motors only and hybrid standing. A subject with SCI successfully performed several trials of hybrid standing. The controllers performed sufficiently accurately, and several minor control problems were fixed. The highest average energy consumption at the knee motors was 88.4 joules during experiment 1. The hybrid standing experiment demonstrated a modest energy reduction of 15% in a subject with SCI. The hybrid standing demonstrated a high energy reduction of 74% in the right knee in experiment 2, through hybrid actuation and a slower standing speed

    Adaptive control for wearable robots in human-centered rehabilitation tasks

    Get PDF
    Robotic rehabilitation therapies have been improving by providing the needed assistance to the patient, in a human-centered environment, and also helping the therapist to choose the necessary procedure. This thesis presents an adaptive "Assistance-as-needed" strategy which adheres to the specific needs of the patient and with the inputs from the therapist, whenever needed. The exertion of assistive and responsive behavior of the lower limb wearable robot is dedicated for the rehabilitation of incomplete spinal cord injury (SCI) patients. The main objective is to propose and evaluate an adaptive control model on a wearable robot, assisting the user and adhering to their needs, with no or less combination of external devices. The adaptation must be more interactive to understand the user needs and their volitional orders. Similarly, by using the existing muscular strength, in incomplete SCI patients, as a motivation to pursue the movement and assist them, only when needed. The adaptive behavior of the wearable robot is proposed by monitoring the interaction and movement of the user. This adaptation is achieved by modulating the stiffness of the exoskeleton in function of joint parameters, such as positions and interaction torques. These joint parameters are measured from the user independently and then used to update the new stiffness value. The adaptive algorithm performs with no need of external sensors, making it simple in terms of usage. In terms of rehabilitation, it is also desirable to be compatible with combination of assistive devices such as muscle stimulation, neural activity (BMI) and body balance (Wii), to deliver a user friendly and effective therapy. Combination of two control approaches has been employed, to improve the efficiency of the adaptive control model and was evaluated using a wearable lower limb exoskeleton device, H1. The control approaches, Hierarchical and Task based approach have been used to assist the patient as needed and simultaneously motivate the patient to pursue the therapy. Hierarchical approach facilitates combination of multiple devices to deliver an effective therapy by categorizing the control architecture in two layers, Low level and High level control. Task-based approaches engage in each task individually and allow the possibility to combine them at any point of time. It is also necessary to provide an interaction based approach to ensure the complete involvement of the user and for an effective therapy. By means of this dissertation, a task based adaptive control is proposed, in function of human-orthosis interaction, which is applied on a hierarchical control scheme. This control scheme is employed in a wearable robot, with the intention to be applied or accommodated to different pathologies, with its adaptive capabilities. The adaptive control model for gait assistance provides a comprehensive solution through a single implementation: Adaptation inside a gait cycle, continuous support through gait training and in real time. The performance of this control model has been evaluated with healthy subjects, as a preliminary study, and with paraplegic patients. Results of the healthy subjects showed a significant change in the pattern of the interaction torques, elucidating a change in the effort and adaptation to the user movement. In case of patients, the adaptation showed a significant improvement in the joint performance (flexion/extension range) and change in interaction torques. The change in interaction torques (positive to negative) reflects the active participation of the patient, which also explained the adaptive performance. The patients also reported that the movement of the exoskeleton is flexible and the walking patterns were similar to their own distinct patterns. The presented work is performed as part of the project HYPER, funded by Ministerio de Ciencia y Innovaci贸n, Spain. (CSD2009 - 00067 CONSOLIDER INGENIOLas terapias de rehabilitaci贸n rob贸ticas han sido mejoradas gracias a la inclusi贸n de la asistencia bajo demanda, adaptada a las variaciones de las necesidades del paciente, as铆 como a la inclusi贸n de la ayuda al terapeuta en la elecci贸n del procedimiento necesario. Esta tesis presenta una estrategia adaptativa de asistencia bajo demanda, la cual se ajusta a las necesidades espec铆ficas del paciente junto a las aportaciones del terapeuta siempre que sea necesario. El esfuerzo del comportamiento asistencial y receptivo del robot personal port谩til para extremidades inferiores est谩 dedicado a la rehabilitaci贸n de pacientes con lesi贸n de la m茅dula espinal (LME) incompleta. El objetivo principal es proponer y evaluar un modelo de control adaptativo en un robot port谩til, ayudando al usuario y cumpliendo con sus necesidades, en ausencia o con reducci贸n de dispositivos externos. La adaptaci贸n debe ser m谩s interactiva para entender las necesidades del usuario y sus intenciones u 贸rdenes volitivas. De modo similar, usando la fuerza muscular existente (en pacientes con LME incompleta) como motivaci贸n para lograr el movimiento y asistirles solo cuando sea necesario. El comportamiento adaptativo del robot port谩til se propone mediante la monitorizaci贸n de la interacci贸n y movimiento del usuario. Esta adaptaci贸n conjunta se consigue modulando la rigidez en funci贸n de los par谩metros de la articulaci贸n, tales como posiciones y pares de torsi贸n. Dichos par谩metros se miden del usuario de forma independiente y posteriormente se usan para actualizar el nuevo valor de la rigidez. El desempe帽o del algoritmo adaptativo no requiere de sensores externos, lo que favorece la simplicidad de su uso. Para una adecuada rehabilitaci贸n, efectiva y accesible para el usuario, es necesaria la compatibilidad con diversos mecanismos de asistencia tales como estimulaci贸n muscular, actividad neuronal y equilibrio corporal. Para mejorar la eficiencia del modelo de control adaptativo se ha empleado una combinaci贸n de dos enfoques de control, y para su evaluaci贸n se ha utilizado un exoesqueleto rob贸tico H1. Los enfoques de control Jer谩rquico y de Tarea se han utilizado para ayudar al usuario seg煤n sea necesario, y al mismo tiempo motivarle para continuar el tratamiento. Enfoque jer谩rquico facilita la combinaci贸n de m煤ltiples dispositivos para ofrecer un tratamiento eficaz mediante la categorizaci贸n de la arquitectura de control en dos niveles : el control de bajo nivel y de alto nivel. Los enfoques basados en tareas involucran a la persona en cada tarea individual, y ofrecen la posibilidad de combinarlas en cualquier momento. Tambi茅n es necesario proporcionar un enfoque basado en la interacci贸n con el usuario, para asegurar su participaci贸n y lograr as铆 una terapia eficaz. Mediante esta tesis, proponemos un control adaptativo basado en tareas y en funci贸n de la interacci贸n persona-ortesis, que se aplica en un esquema de control jer谩rquico. Este esquema de control se emplea en un robot port谩til, con la intenci贸n de ser aplicado o acomodado a diferentes patolog铆as, con sus capacidades de adaptaci贸n. El modelo de control adaptativo propuesto proporciona una soluci贸n integral a trav茅s de una 煤nica aplicaci贸n: adaptaci贸n dentro de la marcha y apoyo contin煤o a trav茅s de ejercicios de movilidad en tiempo real. El rendimiento del modelo se ha evaluado en sujetos sanos seg煤n un estudio preliminar, y posteriormente tambi茅n en pacientes parapl茅jicos. Los resultados en sujetos sanos mostraron un cambio significativo en el patr贸n de los pares de interacci贸n, elucidando un cambio en la energ铆a y la adaptaci贸n al movimiento del usuario. En el caso de los pacientes, la adaptaci贸n mostr贸 una mejora significativa en la actuaci贸n conjunta (rango de flexi贸n / extensi贸n) y el cambio en pares de interacci贸n. El cambio activo en pares de interacci贸n (positivo a negativo) refleja la participaci贸n activa del paciente, lo que tambi茅n explica el comportamiento adaptativo

    Hybrid walking therapy with fatigue management for spinal cord injured individuals

    Get PDF
    In paraplegic individuals with upper motor neuron lesions the descending path for signals from central nervous system to the muscles are lost or diminished. Motor neuroprosthesis based on electrical stimulation can be applied to induce restoration of motor function in paraplegic patients. Furthermore, electrical stimulation of such motor neuroprosthesis can be more efficiently managed and delivered if combined with powered exoskeletons that compensate the limited force in the stimulated muscles and bring additional support to the human body. Such hybrid overground gait therapy is likely to be more efficient to retrain the spinal cord in incomplete injuries than conventional, robotic or neuroprosthetic approaches. However, the control of bilateral joints is difficult due to the complexity, non-linearity and time-variance of the system involved. Also, the effects of muscle fatigue and spasticity in the stimulated muscles complicate the control task. Furthermore, a compliant joint actuation is required to allow for a cooperative control approach that is compatible with the assist-as-needed rehabilitation paradigm. These were direct motivations for this research. The overall aim was to generate the necessary knowledge to design a novel hybrid walking therapy with fatigue management for incomplete spinal cord injured subjects. Research activities were conducted towards the establishment of the required methods and (hardware and software) systems that required to proof the concept with a pilot clinical evaluation. Speciffically, a compressive analysis of the state of the art on hybrid exoskeletons revealed several challenges which were tackled by this dissertation. Firstly, assist-as-needed was implemented over the basis of a compliant control of the robotic exoskeleton and a closed-loop control of the neuroprosthesis. Both controllers are integrated within a hybrid-cooperative strategy that is able to balance the assistance of the robotic exoskeleton regarding muscle performance. This approach is supported on the monitoring of the leg-exoskeleton physical interaction. Thus the fatigue caused by neuromuscular stimulation was also subject of speciffic research. Experimental studies were conducted with paraplegic patients towards the establishment of an objective criteria for muscle fatigue estimation and management. The results of these studies were integrated in the hybrid-cooperative controller in order to detect and manage muscle fatigue while providing walking therapy. Secondly closed-loop control of the neuroprosthesis was addressed in this dissertation. The proposed control approach allowed to tailor the stimulation pattern regarding the speciffic residual motor function of the lower limb of the patient. In order to uncouple the closed-loop control from muscle performance monitoring, the hybrid-cooperative control approach implemented a sequential switch between closed-loop and open-loop control of the neuroprosthesis. Lastly, a comprehensive clinical evaluation protocol allowed to assess the impact of the hybrid walking therapy on the gait function of a sample of paraplegic patients. Results demonstrate that: 1) the hybrid controller adapts to patient residual function during walking, 2) the therapy is tolerated by patients, and 3) the walking function of patients was improved after participating in the study. In conclusion, the hybrid walking therapy holds potential for rehabilitate walking in motor incomplete paraplegic patients, guaranteeing further research on this topic. This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovaci贸n, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010). Within these research projects, cutting-edge research is conducted in the eld of hybrid actuation and control for rehabilitation of motor disorders. This dissertation constitutes proof-of concept of the hybrid walking therapy for paraplegic individuals for these projects. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------En individuos parapl茅jicos con lesiones de la motoneurona superior, la conexi贸n descendente para la transmisi贸n de las se帽ales del sistema nervioso central a los m煤sculos se ve perdida o disminuida. Las neuropr贸tesis motoras basadas en la estimulaci贸n el茅ctrica pueden ser aplicadas para inducir la restauraci贸n de la funci贸n motora en pacientes con paraplejia. Adem谩s, la estimulaci贸n el茅ctrica de tales neuropr贸tesis motoras se puede gestionar y aplicar de manera m谩s eficiente mediante la combinaci贸n con exoesqueletos rob贸ticos que compensen la generaci贸n limitada de fuerza de los m煤sculos estimulados, y proporcionen soporte adicional para el cuerpo. Dicha terapia de marcha ambulatoria puede ser probablemente m谩s eficaz para la recuperaci贸n de las funciones de la m茅dula espinal en lesiones incompletas que las terapias convencionales, rob贸ticas o neuroprotesicas. Sin embargo, el control bilateral de las articulaciones es dif铆cil debido a la complejidad, no-linealidad y la variaci贸n con el tiempo de las caracter铆sticas del sistema en cuesti贸n. Adem谩s, la fatiga muscular y la espasticidad de los m煤sculos estimulados complican la tarea de control. Por otra parte, se requiere una actuaci贸n rob贸tica modulable para permitir un enfoque de control cooperativo compatible con el paradigma de rehabilitaci贸n de asistencia bajo demanda. Todo lo anterior constituy贸 las motivaciones directas para esta investigaci贸n. El objetivo general fue generar el conocimiento necesario para dise帽ar un nuevo tratamiento h铆brido de rehabilitaci贸n marcha con gesti贸n de la fatiga para lesionados medulares incompletos. Se llevaron a cabo actividades de investigaci贸n para el establecimiento de los m茅todos necesarios y los sistemas (hardware y software) requeridos para probar el concepto mediante una evaluaci贸n cl铆nica piloto. Espec铆ficamente, un an谩lisis del estado de la t茅cnica sobre exoesqueletos h铆bridos revel贸 varios retos que fueron abordados en esta tesis. En primer lugar, el paradigma de asistencia bajo demanda se implement贸 sobre la base de un control adaptable del exoesqueleto rob贸tico y un control en lazo cerrado de la neuropr贸tesis. Ambos controladores est谩n integrados dentro de una estrategia h铆brida cooperativa que es capaz de equilibrar la asistencia del exoesqueleto rob贸tico en relaci贸n con el rendimiento muscular. Este enfoque se soporta sobre la monitorizaci贸n de la interacci贸n f铆sica entre la pierna y el exoesqueleto. Por tanto, la fatiga causada por la estimulaci贸n neuromuscular tambi茅n fue objeto de una investigaci贸n espec铆fica. Se realizaron estudios experimentales con pacientes parapl茅jicos para el establecimiento de un criterio objetivo para la detecci贸n y la gesti贸n de la fatiga muscular. Los resultados de estos estudios fueron integrados en el controlador h铆brido-cooperativo con el fin de detectar y gestionar la fatiga muscular mientras se realiza la terapia h铆brida de rehabilitaci贸n de la marcha. En segundo lugar, el control en lazo cerrado de la neuropr贸tesis fue abordado en esta tesis. El m茅todo de control propuesto permite adaptar el patr贸n de estimulaci贸n en relaci贸n con la funcionalidad residual espec铆fica de la extremidad inferior del paciente. Sin embargo, con el n de desacoplar el control en lazo cerrado de la monitorizaci贸n del rendimiento muscular, el enfoque de control h铆brido-cooperativo incorpora una conmutaci贸n secuencial entre el control en lazo cerrado y en lazo abierto de la neuropr otesis. Por 煤ltimo, un protocolo de evaluaci贸n cl铆nica global permitido evaluar el impacto de la terapia h铆brida de la marcha en la funci贸n de la marcha de una muestra de pacientes parapl茅jicos. Los resultados demuestran que: 1) el controlador h铆brido se adapta a la funci贸n residual del paciente durante la marcha, 2) la terapia es tolerada por los pacientes, y 3) la funci on de marcha del paciente mejora despu es de participar en el estudio. En conclusi贸n, la terapia de h铆brida de la marcha alberga un potencial para la rehabilitaci贸n de la marcha en pacientes parapl茅jicos incompletos motor, garantizando realizar investigaci贸n m谩s profunda sobre este tema. Esta tesis se enmarca dentro de los dos proyectos de investigaci贸n: REHABOT (Ministerio de Ciencia e Innovaci贸n, referencia DPI2008-06772-C03-02) y HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, referencia CSD2009-00067 CONSOLIDER INGENIO 2010). Dentro de estos proyectos se lleva a cabo investigaci贸n de vanguardia en el campo de la actuaci贸n y el control h铆brido de la combinaci贸n robot-neuropr贸tesis para la rehabilitaci贸n de trastornos motores. Esta tesis constituye la prueba de concepto de la terapia de h铆brida de la marcha para individuos parapl茅jicos en estos proyectos.This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovaci贸n, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    A functional electrical stimulation (fes) control system for upper limb rehabilitation

    Get PDF
    Functional electrical stimulation (FES) is the controlled use of electrical pulses to produce contraction of muscles in such a way as to support functional movement. FES is now widely used to aid walking in stroke patients and research into using FES to support other tasks is growing. However, in the more complex applications, it is very challenging to achieve satisfactory levels of FES control.The overall aim of the author鈥檚 PhD thesis is to develop improved techniques for real-time Finite State Machine (FSM) control of upper limb FES, using multiple accelerometers for tracking upper limb movement and triggering state transitions. Specific achievements include: 1) Development of new methods for using accelerometers to capture body segment angle during performance of an upper limb task and use of that data to trigger state transitions (angle triggering); 2) Development of new methods to improve the robustness of angle triggering; 3) Development of a flexible finite state-machine controller for control of upper limb FES in real time; 4) In collaboration with a clinical PhD student, implementation of a graphical user interface (GUI) that allows clinical users (e.g. physiotherapists) to set up FSM controllers for FES-assisted upper limb functional tasks.Three alternative methods that use 3-axis accelerometer data to track body segment angle with respect to gravity have been reported. The first uncalibrated method calculates the change in angle during a rotation using the gravity vectors before and after the rotation. The second uncalibrated method calculates the angle between the accelerometer x-axis and the gravity vector. The third calibrated method uses a calibration rotation to define the measurement plane and the positive rotation direction. This method then calculates the component of rotation that is in the same plane as the calibration rotation. All three methods use an algorithm that switches between using sine and cosine, depending on the measured angle, which overcomes the poor sensitivity problem seen in previous methods.xviiiA number of methods can be included in the transition triggering algorithm to improve robustness and hence the usability of the system. The aim of such methods is to reduce the number of incorrect transition timings caused by signal noise, jerky arm movements and other negative effects, which lead to poor control of FES during reaching tasks. Those methods are: 1) Using the change in angle since entering a state rather than absolute angle; 2) Ignoring readings where the acceleration vector is significant in comparison to the gravity vector (i.e. the magnitude of the measured vector is significantly different from 9.81); and 3) Requiring a given number of consecutive or non-consecutive valid readings before triggering a transition. These have been implemented with the second uncalibrated angle tracking method and incorporated into a flexible FSM controller.The flexible FSM controller and the associated setup software are also presented in this thesis, for control of electrical stimulation to support upper limb functional task practice. In order to achieve varied functional task practice across a range of patients, the user should be able to set up a variety of different state machines, corresponding to different functional tasks, tailored to the individual patient. The goal of the work is to design a FSM controller and produce an interface that clinicians (even potentially patients) can use to design and set up their own task and patient-specific FSMs.The software has been implemented in the Matlab-Simulink environment, using the Hasomed RehaStim stimulator and Xsens MTx inertial sensors. The full system has been tested with stroke patients practicing a range of tasks in the laboratory environment, demonstrating the potential for further exploitation of the work
    corecore