2,027 research outputs found

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Human-in-the-Loop Model Predictive Control of an Irrigation Canal

    Get PDF
    Until now, advanced model-based control techniques have been predominantly employed to control problems that are relatively straightforward to model. Many systems with complex dynamics or containing sophisticated sensing and actuation elements can be controlled if the corresponding mathematical models are available, even if there is uncertainty in this information. Consequently, the application of model-based control strategies has flourished in numerous areas, including industrial applications [1]-[3].Junta de Andalucía P11-TEP-812

    Model predictive emissions control of a diesel engine airpath: Design and experimental evaluation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/2/rnc5188.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/1/rnc5188_am.pd

    Neural Network Optimal Feedback Control with Guaranteed Local Stability

    Full text link
    Recent research shows that supervised learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of neural network controllers is still not well understood. In particular, some neural networks with high test accuracy can fail to even locally stabilize the dynamic system. To address this challenge we propose several novel neural network architectures, which we show guarantee local asymptotic stability while retaining the approximation capacity to learn the optimal feedback policy semi-globally. The proposed architectures are compared against standard neural network feedback controllers through numerical simulations of two high-dimensional nonlinear optimal control problems: stabilization of an unstable Burgers-type partial differential equation, and altitude and course tracking for an unmanned aerial vehicle. The simulations demonstrate that standard neural networks can fail to stabilize the dynamics even when trained well, while the proposed architectures are always at least locally stabilizing. Moreover, the proposed controllers are found to be nearly optimal in testing.Comment: arXiv admin note: text overlap with arXiv:2109.0746
    corecore