1,523 research outputs found

    A novel extreme learning machine for hypoglycemia detection

    Full text link
    © 2014 IEEE. Hypoglycemia is a common side-effect of insulin therapy for patients with type 1 diabetes mellitus (T1DM) and is the major limiting factor to maintain tight glycemic control. The deficiency in glucose counter-regulation may even lead to severe hypoglycaemia. It is always threatening to the well-being of patients with T1DM since more severe hypoglycemia leads to seizures or loss of consciousness and the possible development of permanent brain dysfunction under certain circumstances. Thus, an accurate early detection on hypoglycemia is an important research topic. With the use of new emerging technology, an extreme learning machine (ELM) based hypoglycemia detection system is developed to recognize the presence of hypoglycemic episodes. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes are associated with increased heart rates (p < 0.06) and increased corrected QT intervals (p < 0.001). The overall data were organized into a training set with 8 patients (320 data points) and a testing set with 8 patients (269 data points). By using the ELM trained feed-forward neural network (ELM-FFNN), the testing sensitivity (true positive) and specificity (true negative) for detection of hypoglycemia is 78 and 60% respectability

    Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection

    Full text link
    Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity. © 2011 Biomedical Engineering Society

    Healthcare Critical Diagnosis Accuracy: A Proposed Machine Learning Evaluation Metric for Critical Healthcare Analysis

    Get PDF
    Since at least a decade, Machine Learning has attracted the interest of researchers. Among the topics of discussion is the application of Machine Learning (ML) and Deep Learning (DL) to the healthcare industry. Several implementations are performed on the medical dataset to verify its precision. The four main players, True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN), play a crucial role in determining the classifier\u27s performance. Various metrics are provided based on the main players. Selecting the appropriate performance metric is a crucial step. In addition to TP and TN, FN should be given greater weight when a healthcare dataset is evaluated for disease diagnosis or detection. Thus, a suitable performance metric must be considered. In this paper, a novel machine learning metric referred to as Healthcare-Critical-Diagnostic-Accuracy (HCDA) is proposed and compared to the well-known metrics accuracy and ROC_AUC score. The machine learning classifiers Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Naive Bayes (NB) are implemented on four distinct datasets. The obtained results indicate that the proposed HCDA metric is more sensitive to FN counts. The results show, that even if there is rise in %FN for dataset 1 to 10.31 % then too accuracy is 83% ad HCDA shows correlated drop to 72.70 %. Similarly, in dataset 2 if %FN rises to 14.80 for LR classifier, accuracy is 78.2 % and HCDA is 63.45 %. Similar kind of results are obtained for dataset 3 and 4 too. More FN counts result in a lower HCDA score, and vice versa. In common exiting metrics such as Accuracy and ROC_AUC score, even as the FN count increases, the score increases, which is misleading. As a result, it can be concluded that the proposed HCDA is a more robust and accurate metric for Critical Healthcare Analysis, as FN conditions for disease diagnosis and detection are taken into account more than TP and TN
    • …
    corecore