2,527 research outputs found

    Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint

    Full text link
    Inspired by ideas taken from the machine learning literature, new regularization techniques have been recently introduced in linear system identification. In particular, all the adopted estimators solve a regularized least squares problem, differing in the nature of the penalty term assigned to the impulse response. Popular choices include atomic and nuclear norms (applied to Hankel matrices) as well as norms induced by the so called stable spline kernels. In this paper, a comparative study of estimators based on these different types of regularizers is reported. Our findings reveal that stable spline kernels outperform approaches based on atomic and nuclear norms since they suitably embed information on impulse response stability and smoothness. This point is illustrated using the Bayesian interpretation of regularization. We also design a new class of regularizers defined by "integral" versions of stable spline/TC kernels. Under quite realistic experimental conditions, the new estimators outperform classical prediction error methods also when the latter are equipped with an oracle for model order selection

    Ground insect community responses to habitat restoration efforts in the Attappady hills, Western Ghats, India

    Get PDF
    A reconnaissance survey was undertaken to assess the responses of ground insect communities to habitat restoration efforts in the Attappady hills, Western Ghats.Diversity patterns of various ground insect assemblages such as ants, beetles, etc. were compared across an age trajectory of restored sites. The diversity of these assemblages was correlated with age trajectory of sites. Also, patterns of recolonization by different insect trophic guilds and ant functional groups were comparable with earlier studies from different biogeographic areas

    Bayesian models for syndrome- and gene-specific probabilities of novel variant pathogenicity

    Get PDF
    BACKGROUND: With the advent of affordable and comprehensive sequencing technologies, access to molecular genetics for clinical diagnostics and research applications is increasing. However, variant interpretation remains challenging, and tools that close the gap between data generation and data interpretation are urgently required. Here we present a transferable approach to help address the limitations in variant annotation. METHODS: We develop a network of Bayesian logistic regression models that integrate multiple lines of evidence to evaluate the probability that a rare variant is the cause of an individual's disease. We present models for genes causing inherited cardiac conditions, though the framework is transferable to other genes and syndromes. RESULTS: Our models report a probability of pathogenicity, rather than a categorisation into pathogenic or benign, which captures the inherent uncertainty of the prediction. We find that gene- and syndrome-specific models outperform genome-wide approaches, and that the integration of multiple lines of evidence performs better than individual predictors. The models are adaptable to incorporate new lines of evidence, and results can be combined with familial segregation data in a transparent and quantitative manner to further enhance predictions. Though the probability scale is continuous, and innately interpretable, performance summaries based on thresholds are useful for comparisons. Using a threshold probability of pathogenicity of 0.9, we obtain a positive predictive value of 0.999 and sensitivity of 0.76 for the classification of variants known to cause long QT syndrome over the three most important genes, which represents sufficient accuracy to inform clinical decision-making. A web tool APPRAISE [http://www.cardiodb.org/APPRAISE] provides access to these models and predictions. CONCLUSIONS: Our Bayesian framework provides a transparent, flexible and robust framework for the analysis and interpretation of rare genetic variants. Models tailored to specific genes outperform genome-wide approaches, and can be sufficiently accurate to inform clinical decision-making

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Particle Filter for Targets Tracking with Motion Model

    Get PDF
    Real-time robust tracking for multiple non-rigid objects is a challenging task in computer vision research. In recent years, stochastic sampling based particle filter has been widely used to describe the complicated target features of image sequence. In this paper, non-parametric density estimation and particle filter techniques are employed to model the background and track the object. Color feature and motion model of the target are extracted and used as key features in the tracking step, in order to adapt to multiple variations in the scene, such as background clutters, object's scale change and partial overlap of different targets. The paper also presents the experimental result on the robustness and effectiveness of the proposed method in a number of outdoor and indoor visual surveillance scenes.published_or_final_versio
    corecore