2,677 research outputs found

    A novel dual surface type-2 fuzzy logic controller for a micro robot

    Get PDF
    Over the last few years there has been an increasing interest in the area of type-2 fuzzy logic sets and systems in academic and industrial circles. Within robotic research the majority of type-2 fuzzy logic investigations has been centred on large autonomous mobile robots, where resource availability (memory and computing power) is not an issue. These large robots usually have a variation of a Unix operating system on board. This allows the implementation of complex fuzzy logic systems to control the motors. Specifically the implementation of interval and geometric type-2 fuzzy logic controllers is of interest as they are shown to outperform type-1 fuzzy logic controllers in uncertain environments. However when it comes to using micro robots it is not practical to use type-1 and type-2 fuzzy logic controllers, due to the lack of memory and the processor time needed to calculate a control output value. The choice of motor controller is usually either fixed pre-set values, a variable scaled value or a PID controller to generate wheel velocities. In this research novel ways of implementing type-1 and interval type-2 fuzzy logic controllers on micro robots with limited resources are investigated. The solution thatis being proposed is the use of pre-calculated 3D surfaces generated by an off-line Fuzzy Logic System covering the expected ranges of the input and output variables. The surfaces are then loaded into the memory of the micro robots and can be accessed by the motor controller. The aim of the research is to test if there is an advantage of using type-2 fuzzy logic controllers implemented as surfaces over type-1 and PID controllers on a micro robot with limited resources. Control surfaces were generated for both type-1 and average interval type-2 fuzzy logic controllers. Each control surface was then accessed using bilinear interpolation to provide the crisp output value that was used to control the motor. Previously when this method has been used a single surface was employed to hold the information. This thesis presents the novel approach of the dual surface type-2 fuzzy logic controller on micro robots. The lower and upper values that are averaged for the classic interval type-2 controller are generated as surfaces and installed on the micro robots. The advantage is that nuances and features of both the lower and upper surfaces are available to be exploited, rather than being lost due to the averaging process. Having conducted the experiments it is concluded that the best approach to controlling micro robots is to use fuzzy logic controllers over the classical PID controllers where ever possible. When fuzzy controllers are used then type-2 fuzzy controllers (dual or single surface) should be used over type-1 fuzzy controllers when applied as surfaces on micro robots. When a type-2 fuzzy controller is used then the novel dual surface type-2 fuzzy logic controller should be used over the classic average surface. The novel dual surface controller offers a dynamic, weighted, adaptive and superior response over all the other fuzzy controllers examined

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    A comparison of non-stationary, type-2 and dual surface fuzzy control

    Get PDF
    Type-1 fuzzy logic has frequently been used in control systems. However this method is sometimes shown to be too restrictive and unable to adapt in the presence of uncertainty. In this paper we compare type-1 fuzzy control with several other fuzzy approaches under a range of uncertain conditions. Interval type-2 and non-stationary fuzzy controllers are compared, along with ‘dual surface’ type-2 control, named due to utilising both the lower and upper values produced from standard interval type-2 systems. We tune a type-1 controller, then derive the membership functions and footprints of uncertainty from the type-1 system and evaluate them using a simulated autonomous sailing problem with varying amounts of environmental uncertainty. We show that while these more sophisticated controllers can produce better performance than the type-1 controller, this is not guaranteed and that selection of Footprint of Uncertainty (FOU) size has a large effect on this relative performance

    Adaptive P Control and Adaptive Fuzzy Logic Controller with Expert System Implementation for Robotic Manipulator Application

    Get PDF
    This study aims to develop an expert system implementation of P controller and fuzzy logic controller to address issues related to improper control input estimation, which can arise from incorrect gain values or unsuitable rule-based designs. The research focuses on improving the control input adaptation by using an expert system to resolve the adjustment issues of the P controller and fuzzy logic controller. The methodology involves designing an expert system that captures error signals within the system and adjusts the gain to enhance the control input estimation from the main controller. In this study, the P controller and fuzzy logic controller were regulated, and the system was tested using step input signals with small values and larger than the saturation limit defined in the design. The PID controller used CHR tuning to least overshoot, determining the system's gain. The tests were conducted using different step input values and saturation limits, providing a comprehensive analysis of the controller's performance. The results demonstrated that the adaptive fuzzy logic controller performed well in terms of %OS and settling time values in system control, followed by the fuzzy logic controller, adaptive P controller, and P controller. The adaptive P controller showed similar control capabilities during input saturation, as long as it did not exceed 100% of the designed rule base. The study emphasizes the importance of incorporating expert systems into control input estimation in the main controller to enhance the system efficiency compared to the original system, and further improvements can be achieved if the main processing system already possesses adequate control ability. This research contributes to the development of more intelligent control systems by integrating expert systems with P controllers and fuzzy logic controllers, addressing the limitations of traditional control systems and improving their overall performance

    Performance Comparison of Several Control Algorithms for Tracking Control of Pantograph Mechanism

    Get PDF
    A sort of parallel manipulator known as a pantograph robot mechanism was created primarily for industrial requests that required high precision and satisfied speed. While tracking a chosen trajectory profile requires a powerful controller. Because it has four active robot links and one robot passive link in place of just two links like the open chain does, it can carry more loads than the open chain robot mechanism while maintaining accuracy and stability. The calculated model for a closed chain pantograph robot mechanism presented in this paper takes into account the boundary conditions. For the purpose of simulating the dynamics of the pantograph robot mechanism, an entire MATLAB Simulink has been created. The related Simscape model had been created to verify the pantograph mathematical model that had been provided. Five alternative tracking controllers were also created and improved using the Flower Pollination (FP) algorithm. The PID controller, which is used in many engineering applications, is the first control. An enriched Fractional Order PID (FOPID) controller is the second control. The third control considers an improved Nonlinear conventional PID (NLPID) controller, and the parameters for this controller were likewise determined using (FP) optimization using the useful objective function. Model Reference Adaptive Control (MRAC) with PID Compensator is the fourth control. The Fuzzy PD+I Control is the last and final controller. A comparison of the different control methods was completed. A rectangular trajectory was chosen as the end effector of the pantograph robot\u27s position reference because it displays performance during sharp edges and provides a more accurate study. The proposed controllers were used for this task to analyse the performance. The outcomes demonstrate that the Fuzzy PD+I control outperforms the PID, FOPID, NLPID, and MRAC with PID Compensator controllers in terms of performance. In the case of the Fuzzy PD+I control, the angles end effector has a lower rise time, a satisfied settling time, and low overshoot with good precision

    Fuzzy PD control of an optically guided long reach robot

    Get PDF
    This thesis describes the investigation and development of a fuzzy controller for a manipulator with a single flexible link. The novelty of this research is due to the fact that the controller devised is suitable for flexible link manipulators with a round cross section. Previous research has concentrated on control of flexible slender structures that are relatively easier to model as the vibration effects of torsion can be ignored. Further novelty arises due to the fact that this is the first instance of the application of fuzzy control in the optical Tip Feedback Sensor (TFS) based configuration. A design methodology has been investigated to develop a fuzzy controller suitable for application in a safety critical environment such as the nuclear industry. This methodology provides justification for all the parameters of the fuzzy controller including membership fUllctions, inference and defuzzification techniques and the operators used in the algorithm. Using the novel modified phase plane method investigated in this thesis, it is shown that the derivation of complete, consistent and non-interactive rules can be achieved. This methodology was successfully applied to the derivation of fuzzy rules even when the arm was subjected to different payloads. The design approach, that targeted real-time embedded control applicat.ions from the outset, results in a controller implementation that is suitable for cheaper CPU constrained and memory challenged embedded processors. The controller comprises of a fuzzy supervisor that is used to alter the derivative term of a linear classical Proportional + Derivative (PD) controller. The derivative term is updated in relation to the measured tip error and its derivative obtained through the TFS based configuration. It is shown that by adding 'intelligence' to the control loop in this way, the performance envelope of the classical controller can be enhanced. A 128% increase in payload, 73.5% faster settling time and a reduction of steady state of over 50% is achieved using fuzzy control over its classical counterpart
    corecore